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Spike trains.

Questions about trains.

• How do the properties of spike trains change along a sensory
pathway?

• Is the song rate coded or is there information in temporal
features?

• Are neurons in populations redundant?
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Spike trains.

Questions about trains.

• What is the information theory of spike trains?
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Spike trains.

Shannon’s entropy.

H = −
∑

events

(probability of the event) log (probability of the event)
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Spike trains.

Bialek approach to information and spike trains.1

0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0

↓

↓
{ 00101,01001,10110,00101,10110,10000,10100,00100}

1Entropy and Information in Neural Spike Trains, Strong SP, Koberle R, de
Ruyter van Steveninck RR and Bialek W (1998) Phys. Rev. Lett. 80: 197-200
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Spike trains.

Bialek approach to information - calculation.

Make a table, for example:

word 00101 01001 10110 10101 10110 10000 etc

prob. 0.011 0.022 0.052 0.011 0.054 0.098 . . .

and calculate the corresponding entropy

H = −
∑

words

p(word) log p(word)
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Spike trains.

Bialek approach to information - result.

The information is the difference between the signal entropy and
the noise entropy.

Hs − Hη
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Spike trains.

Bialek approach to information - result.

This is the mutual information between the stimulus and the
response.

Hs = H(response)
Hη = H(response|stimulus)

so
I (response, stimulus) = Hs − Hη
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Spike trains.

Bialek approach to information and spike trains - problems.

• To take into account timing precision a small discretization
lengths is needed.

• A huge number of words, most of the ones that occur are
mostly zeros.

• A huge sample size needed; Bialek worked with fly, such long
recording are not normally possible.

• There are also interpretational problems with any information
theory approach to neuroscience, we won’t deal with that here.
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Spike trains.

Bialek approach to information and spike trains - no noise
model.

• No model of noise.

• No notion of one word being near another.

0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0

↓

↓
{ 00101,01001,10110,00101,10110,10000,10100,00100}
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Spike trains.

The space of spike trains?

• Should we using the discrete theory or the continuous one?

• Spike times are not discrete.

• The continuous theory assumes a continuous space, what is
the space of spike trains?

&%
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Metric spaces.

Metric spaces

A metric maps pairs of points a and b, to a
real number d(a, b) such that

• Positive and distinguishable

d(a, b) ≥ 0
d(a, b) = 0⇐⇒ a = b,

• Symmetric

d(a, b) = d(b, a).

• Triangle inequality

d(a, b) ≤ d(a, c) + d(c , b).
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Metric spaces.

Euclidean metrics

• In R3 say

x = (x1, x2, x3)
y = (y1, y2, y3)

• The dot product is given by
x · y = x1y1 + x2y2 + x3y3

• The dot-product of a vector with itself is a norm, a
measure of the length of the vector |x| =

√
x · x.

• This norm induces a metric, called the L2 metric

d(x, y) = |x− y| =

√√√√ 3∑
i=1

(xi − yi )2.
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Metric spaces.

Euclidean metrics on the space of functions.

This generalizes to functions, if f (t) and g(t) are both real
functions on the same interval, [0,T ] say, then the L2-metric is

d(f , g) =

√∫ T

0
dt(f − g)2.
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Metric spaces.

Spike trains aren’t a vector space.

• While it might be possible to define the addition of two spike
trains by superposition, it isn’t at all obvious how to define
the difference.

• There is no reason to expect spike trains to be Euclidean.



A metric space approach to the information capacity of spike trains.

Metric spaces.

A non-Euclidean metric: Metrics in towns.

‘As the crow flies’ distance versus route distance.
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Metric spaces.

Metrics and spike trains.

• The framework for continuous version of information theory is
a manifold, but perhaps that isn’t needed, perhaps it can be
rephrased in terms of metric spaces.
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The van Rossum metric.

The van Rossum metric.

• A spike train is a list of spike times.

u = {u1, u2, · · · , um}

• Map spike trains to functions of t

u 7→ f (t;u) =
m∑
i=1

h(t − ui )

• h(t) is a kernel, here, it is a causal exponential function

h(t) =

{
exp (−t/δT ) t > 0
0 t ≤ 0

• Now

d(u, v) =

√∫
dt[f (t;u)− f (t; v)]2.
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The van Rossum metric.

The van Rossum metric.

Two steps

• Maps from spike trains to functions using a filter.

• Use the metric on the space of functions.
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The van Rossum metric.

The van Rossum metric.
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Comparing metrics

Comparing metrics

The basic idea is to use the candidate metric to cluster a set of
spike trains, and to compare this clustering with a “gold standard”,
namely, clustering the spike trains according to the stimuli that
elicited them.

The scheme we use is a jack-knife calculation of a confusion
matrix. The transmitted information h̃ is used to score clustering
with one, the highest, corresponding to perfect clustering.
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Noise on the metric space of spike trains.

How would information theory work on the metric space of spike
trains?
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Noise on the metric space of spike trains.

Imagine . . .

• First lets ask how it would look if there were coordinates for
spike trains.

• Imagine there is a space of spike trains with coordinates and
all that.

X1 X2 X3 X4� -� -� -� -
u

• Imagine there is a coordinate for each length L piece of spike
train.
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Noise on the metric space of spike trains.

Imagine further . . .

• Imagine that each variable has independent additive Gaussian
noise.

Xi = Yi + η

η
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Noise on the metric space of spike trains.

The χ-distribution.

• The distance between two such vectors satisfies a
χ-distribution: X = (X1,X2, . . . ,Xk), X′ = (X ′

1,X
′
2, . . . ,X

′
k)

has |X− X′| ∼ χ(σ, k).
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Noise on the metric space of spike trains.

The χ-distribution.
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Noise on the metric space of spike trains.

Idea!

• Turn this around!2

I Propose this as the distribution of distances.
I Calculate k from the distribution and use this to work out L.

k =
2〈ζ2〉2

〈ζ4〉 − 〈ζ2〉2
.

I Use the noise model to calculate information.

2A metric space approach to the information channel capacity of spike
trains Gillespie, JB and Houghton, CJ (2011) J. Comput. Neurosci. 30(1).
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Noise on the metric space of spike trains.

Idea!

• Turn this around!2

I Propose this as the distribution of distances.
I Calculate k from the distribution and use this to work out L.

k =
2〈ζ2〉2

〈ζ4〉 − 〈ζ2〉2
.

I Use the noise model to calculate information.

2A metric space approach to the information channel capacity of spike
trains Gillespie, JB and Houghton, CJ (2011) J. Comput. Neurosci. 30(1).
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Noise on the metric space of spike trains.

Idea!

• k is a sort of noise dimension or effective dimension.
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Results.

χ-distribution.

G M P

• Tested using the Anderson-Darling test.
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Results.

k as a function of spike train length.

• k should increase linearly with sample length.

G M P
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Results.

Channel capacity.

X1 X2 X3 X4� -� -� -� -

The channel capacity for a single Gaußian variable X is

C =
1

2
log2

(
1 +

ν2

σ2

)
bits per time unit

where σ2 is the signal variance, usually taken to be the bound by
the power constraint and ν2 is the noise variance.
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Results.

Information theory - this works.

• Model the spike train as a Gaußian channel but re-express the
calculations in terms of distance based quantities!
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Results.

Information theory - this works.

For example,

• If X and X ′ are iid Gaussian variables with variance σ2 their
difference is Gaussian with variance σ2d = 2σ2.
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Results.

Channel capacity.

C =
1

2
log2

(
ξ2d
σ2d

)
bits per L.

where ξ2d is the signal variance and σ2d the noise variance and
L = (sample length)/k.
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Results.

Variances.

• ξ2d and σ2d are calculated by least squares fit.

G M P
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Results.

Channel capacity of the cells we looked at.
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Conclusions

Information theory on the metric space.

• The noise model fits the data we have.

• Seems to be the natural arena for information theory
calculations.

• The channel capacity theory is about encoding discrete
information in a continuous signal.

I What we actually need is distortion theory.

• A multi-neuron version is needed for populations.

• Most of all, need to apply to more data.
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Conclusions

More general conclusions.

• Information theory - what’s the story with that?

• So, what is the space of spike trains?
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