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The zebra finch song system

The zebra finch.



Spike trains and spike codes

The zebra finch song system

The zebra finch auditory pathway.
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The zebra finch song system

Spike trains.
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The zebra finch song system

Spectro-temporal receptive fields.

r̃(t) =

∫ ∑
f

hf (τ)sf (t − τ)dτ
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The zebra finch song system

Questions about zebra finch spiking responses - rates.

• Is the song rate coded or is there information in temporal
features?

I How do you distinguish the effect of a time varying rate from a
temporal feature?

I How can the rate be calculated: this is both a practical and
theoretical question.

I What is that rate; are we to image there some platonic ideal
rate for which the spike trains are derived statistically?
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The zebra finch song system

Questions about zebra finch spiking responses -
information.

• How much information is carried in spike trains?
I Should we use the discrete theory or the continuous one?

I Spike times are not discrete and discrete calculations don’t
seem to give satisfactory answers.

I The continuous theory assumes a continuous space, what is
the space of spike trains?
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The zebra finch song system

Questions about zebra finch spiking responses - overall.

• How should we compare responses?

• What is the space of spike trains?
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Metric spaces

A metric maps pairs of points a and b, to a
real number d(a, b) such that

• Positive and distinguishable

d(a, b) ≥ 0
d(a, b) = 0⇐⇒ a = b,

• Symmetric

d(a, b) = d(b, a).

• Triangle inequality

d(a, b) ≤ d(a, c) + d(c , b).
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Metric spaces

Euclidean metrics

• In R3 say

x = (x1, x2, x3)
y = (y1, y2, y3)

• The dot product is given by
x · y = x1y1 + x2y2 + x3y3

• The dot-product of a vector with itself is a norm, a
measure of the length of the vector |x| =

√
x · x.

• This norm induces a metric, called the L2 metric

d(x, y) = |x− y| =

√√√√ 3∑
i=1

(xi − yi )2.
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Metric spaces

Euclidean metrics on the space of functions.

This generalizes to functions, if f (t) and g(t) are both real
functions on the same interval, [0,T ] say, then the L2-metric is

d(f , g) =

√∫ T

0
dt(f − g)2.
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Metric spaces

Spike trains aren’t a vector space.

• While it might be possible to define the addition of two spike
trains by superposition, it isn’t at all obvious how to define
the difference.

• There is no reason to expect spike trains to be Euclidean.
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Metric spaces

A non-Euclidean metric: Metrics in towns.

‘As the crow flies’ distance versus route distance.
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Metric spaces

A non-Euclidean metric: Color perception.

MacAdam ellipses in color space.
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Metric spaces

Metrics and spike trains.

• Perhaps spike train metrics will allow us to find the salient
features of spike trains without the need to discuss spike rates.

• The framework for continuous version of information theory is
a manifold, but perhaps that isn’t needed, perhaps it can be
rephrased in terms of metric spaces.

• Obviously this leaves open the question of how to find a spike
train metric.

• Maybe we are wrong in using a metric space, maybe a
semimetric is more natural in this context.
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The spike count distance

The spike count distance.

• The influence of stimulus strength on a neuron’s firing rate is
perhaps the most broadly observed principle in the sensory
systems.

I Somatosensory receptor cells fire with a rate that depends on
the stimulus strength.

I V1 cells in the mammalian visual cortex fire with a rate that
depends on how well the stimulus matches a receptive field.

I Auditory cells are tuned to show a rate response to particular
features in sound.

This gives the spike count distance between spike trains u and v

d(u, v) = |difference in the number of spikes|
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The spike count distance

Example.

The spike count distance:

d(u, v) = |m − n|

where m is the number of spikes in u and n the number in v.
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36 spikes

32 spikes

Here the distance between the two spike trains would be four.
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The spike count distance

Segmented spike count distance.

• Divide the interval into N sub-intervals of length δT = T/N.

• Take the spike count distance in each sub-interval

di = |mi − ni |

I mi is the number of spikes in u in the ith sub-interval.
I ni performs the same role for v.

• The distance between the two spike trains is the Pythagorean
sum of all these sub-interval distances.

d(u, v) =

√√√√ N∑
i=1

d2
i

• Probably the most common way to compare responses.
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The spike count distance

Segmented spike count distance - example.

13 11 8 4� -� -� -� -

12 7 7 6� -� -� -� -

d1 = 1 d2 = 4 d3 = 1 d4 = 2

u

v

Here, with δT = .25s, the distance between the two spike trains is

d(u, v) =
√

d2
1 + d2

2 + d2
3 + d2

4 =
√

22 ≈ 4.69
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The spike count distance

Filtered spike count distance.

• Use a moving interval: δ(t) = [t − δT/2, t + δT/2]
I m(t) is the number of spikes in u in δ(t).
I n(t) is the number of spikes in v in δ(t).

• Take the spike count distance in each sub-interval

d(t) = |m(t)− n(t)|

• The distance between the two spike trains is the Pythagorean
integral all these sub-interval distances.

d(u, v) =

√∫ T

0
d(t)2dt

• Smooths the segmented spike count distance.



Spike trains and spike codes

The spike count distance

Filtered spike count distance - example.

8� -

9� -

d(t = .6) = 1

Here, with δT = .25s, the distance between the two spike trains is

d(u, v) =

√∫ T

0
d(t)2dt ≈ 7.91
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The van Rossum metric.

The filtered distance can be rewritten as a filter: the van
Rossum metric.

• A spike train is a list of spike times.

u = {u1, u2, · · · , um}
• Map spike trains to functions of t

u 7→ f (t; u) =
m∑

i=1

h(t − ui )

• h(t) is a kernel, here, it is a boxcar function

h(t) =

{
1 −δT/2 < t < δT/2
0 otherwise

.

• Now

d(u, v) =

√∫
dt[f (t; u)− f (t; v)]2.
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The van Rossum metric.

The van Rossum metric.

Two steps

• Maps from spike trains to functions using a filter.

• Use the metric on the space of functions.
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The van Rossum metric.

Filters

Boxcar

h(t) =

{
1 t ∈ [−δT/2, δT/2]
0 otherwise

Causal exponential

h(t) =

{
exp (−t/δT ) t > 0
0 t ≤ 0

Gaussian
h(t) = exp (−t2/2δ2

T )
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The van Rossum metric.

Filters

• Which filter is correct?

• Each filter has a different motivation.
I Boxcar - rate difference.
I Exponential - neuronal and synaptic dynamics.
I Gaussian - statistical models.

• Probably best considered as an experimental question.
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Comparing metrics

Comparing metrics

The basic idea is to use the candidate metric to cluster a set of
spike trains, and to compare this clustering with a “gold standard”,
namely, clustering the spike trains according to the stimuli that
elicited them.

The scheme we will use here is a jack-knife calculation of a
confusion matrix. The transmitted information h̃ is used to score
clustering with one, the highest, corresponding to perfect
clustering.
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Comparing metrics

Comparing metrics

G
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A

A is spike count distance. B boxcar, C Gaussian and D
exponential. E− G are the same again but with site bests.
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Comparing metrics

Metrics - boxcar timescale.
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Average performance with the boxcar filter plotted against δT .
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Comparing metrics

Comparing metrics - exponential timescales.

Optimal timescales plotted from 0 to 50ms. The average is 15ms.
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Comparing metrics

Ideal filter.

Learning the best filter.
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Synapse metric

A more general map.

The van Rossum metric filters the spike train to get a function and
then uses the metric on the space of functions. It can be easily
generalized by allowing any map.

u 7→ f (t; u)
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Synapse metric

Synapses.

• Neurotransmitter floods
the cleft.

• The neurotransmitter
binds to the gated
channels.

I Conductance in the
dendritic membrane
causes a PSP.

• The neurotransmitter
unbinds.
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Synapse metric

The van Rossum metric

u 7→ f (t; u)

where f (t; u) is modelled on the synaptic conductance.

• Unbinding of neurotransmitter.

τ
df

dt
= −f

• Release of neurtransmitter.

f → f + 1

whenever a spike arrives.

Equivalent to the van Rossum map with exponential filter.
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Synapse metric

A metric based on a (slightly) more realistic synapse model.

• Unbinding of neurotransmitter.

τ
df

dt
= −f

• Release of neurtransmitter.

f → (1− µ)f + 1

whenever a spike arrives. The extra factor of (1− µ) models
the depletion of binding sites.

I If µ = 0 this is the original van Rossum map.
I If µ = 1 a spike arriving resets f to one; this is the case if all

binding sites are used up when a spike arrives.
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Synapse metric

The synapse metric

f (t; u) for µ = 0 and µ = 0.7.
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Synapse metric

Comparing metrics - synapse metric.

D

C

B

A

A is van Rossum with exponential filter, B the synapse metric.
C−D are the same again but with site bests.
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Synapse metric

Comparing metrics - synapse metric.

Average performance plotted against h̃.
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Synapse metric

Synapse metric - properties.

• The only adjustment that seems to produce an improvement
for these data.

I All sorts of synapse dynamics can be modelled: depression and
facilitation, a continuous response to spikes.

• Spike times and spike count more salient when there are fewer
spikes.
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Synapse metric

Synapse metric - physiology?

Values of µ.
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