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What is this talk about

First we’ll discuss estimating mutual information and then
we’ll discuss estimating transfer entropy.



Shannon’s entropy

H(X ) = −
∑
x

p(x) log2 p(x)



Shannon’s entropy
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Mutual information

H(X ,Y )

H(Y |X )H(X |Y )



Mutual information

H(X ,Y )

I (X ,Y )



Mutual information

H(X ,Y )

H(Y )H(X )

I (X ,Y )

I (X ,Y ) = H(X ) + H(Y )− H(X ,Y )



Mutual information

Mutual information is the true way we measure the rela-
tionship between variables; but we ignore it because it is
so hard to estimate.



Classical approach

• Discretize.

?
0 1 0 0 0 1 0 0 0 0 0 0 1 0 0

• Split into words.

010001000000100→ 01000, 10000, 00100

Bialek, de Ruyer van Steveninck, Strong and other coworkers, late 1990s.



Classical approach

• Estimate probability of words. For example, say w8 = 01000
then estimate

p(w8) ≈ # occurrences of w8

# words

• Calculate

H(W ) = −
∑
i

p(wi ) log2 p(wi ) = −〈log2 p(wi )〉

Bialek, de Ruyer van Steveninck, Strong and other coworkers, late 1990s.



ms scale information in blow fly spike trains.

Bialek, de Ruyer van Steveninck, Strong and other coworkers, late 1990s.



Difficulties with the classical approach.

• Undersampling.
• 100 ms words and 2 ms bins gives 250 = 1125899906842624

words.
• Lots of clever approaches to this, for example Nemenman et

al. (PRE 2004, BMC Neuroscience 2007) where a cunning
prior is used for p(wi ).

• Sampling bias.
• An even distribution will never give equal counts for each

word, giving different p(wi ).
• Lots of clever approaches to this too, see Panzeri et al. (J

Neurophys. 2007).



Many fixes but still . . .

• Neuron - neuron mutual information.

• Maze - neuron mutual information.

• Mutual information between populations.

• Mutual information between neurons and field potentials.

field potentials

neurons

behaviours



Also ignores the proximity structure!



Also ignores the proximity structure!



Also ignores the proximity structure!
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Also ignores the proximity structure!



Classical approach

• Discretize.

?
0 1 0 0 0 1 0 0 0 0 0 0 1 0 0

• Discretize.

?
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0



van Rossum metric

Spike trains mapped to functions and a metric on the space of
functions induces a metric on the spike train space.

van Rossum (Neural Comp. 2001)



Multi-unit van Rossum metric

• There is a multi-unit easily computed version of the van
Rossum metric.

• It relies on a time constant and a population parameter.

Houghton and Sen (Neural Comp. 2008) / Houghton and Kreuz (Network 2012)



The rules

We want to estimate mutual information for data on a
metric space

• There is a KDE version of this, here we use a
Kozachenko-Leonenko approach

• It ends up somewhat similar to the Kraskov, Stögbauer and
Grassberger (KSG) estimator.



A dart board

photo from ebay (£4.20 +p.p.)



A dart board



Probability mass function

prob(dart lands in B) =

∫
B

p(x)dV



Estimating using the number of number of holes

〈number of holes in B〉 =

∫
B

p(x)dV × (total number of holes)

where the total volume is normalized.



Estimating the probability mass function

If the mass function varies slowly:∫
B

p(x)dV ≈ p(x0)× vol B

so

number of holes in B ≈ p(x0)× vol B × (total number of holes)

Using this to find the mutual information gives a
Kozachenko-Leonenko estimator.



Estimating using the number of number of holes

p(x0) ≈ #B

n × vol B

where n is the total number of points and #B is the number of
points in B.

so

p(◦) =
4

nvol B



Problem

How do we work out the volume in the space of functions? We
have no coordinates xyz to do

vol B =

∫
B

dxdydz

We must respect the rules and use only the metric, well the metric
and the existence of the probability density.



Use the mass function as a measure!

vol B =

∫
B

p(x)dV



Volume by counting holes

vol B ≈ number of holes in B

total number of holes



Volume by counting holes

A ball with volume h/n around the circled point, where n is the
total number of holes and h = 4.



Metric

To make a ball you need a metric; not to measure the
radius since the size is being defined by the volume, but
to define ‘the nearest h points’.



Oh no

p(x0) ≈ #B

n × vol B
=

h

nh/n
= 1

and using this meaure gives H(X ) = 0; in fact the differential
entropy is not well-defined. However the mutual information is!



Mutual infomation

I (X ,Y ) = H(Y )− H(Y |X )

has two probability distributions: pY (y) and pY |X (y |x)!

IDEA: use one to estimate volume, the other can then be
estimated by counting!



Formula - discrete case

This is for the case where X is a discrete random variable and
everything exciting is happening in Y space.

I (X ,Y ) =
1

n

∑
yi

log2
n#yi B

h

where#yB are the number of points in B that correspond to the X
value as y and ns is the number of stimuli.

Conor Houghton, Royal Society Open Science, 2 (2015) 140391.



Formula - discrete case

I (X ,Y ) =
1

n

∑
yi

log2
ns#yi B

h



h

There are two approximations:∫
B

p(x)dV ≈ #B × vol B

and ∫
B

p(x)dV ≈ V× p(x0)

The first approximation gets better if the volume is bigger, the
second gets worse; the correct choice of h is a compromize
between these two. There is actually a successful approach to
picking h that seems to work, based on the bias, which can be
calculated analytically.

Jake Witter, Conor Houghton arXiv 2105.08682.



Two continuous variable

This also works for the case where X and Y are both con-
tinuous; as for example, when comparing neuronal popu-
lations!



Two continuous variable

In this case we use exploit the fact that there are two
probability distributions on the joint space (X ,Y ).

The joint distribution:
pX ,Y (x , y)

and the marginalized distribution

pX (x)pY (y)



Two continuous variables

I (X ,Y ) =
1

n

n∑
i=1

log2
n#[C (xi , yi )]

h2

with C (xi , yi ) = CX (xi , yi ) ∪ CY (xi , yi )

Conor Houghton, Neural Computation (2019) 31:330-343



Two continuous variables

I (X ,Y ) =
1

n

n∑
i=1

log2
n#[C (xi , yi )]

h2

Y

X

CX

CY

︷ ︸︸ ︷





Two continuous variables

Conor Houghton, Neural Computation (2019) 31:330-343



Transfer entropy

Work with Jake Witter . . . with a paper in preparation.



What about transfer entropy?

The transfer entropy is a measure of causality!



What about transfer entropy?

Isn’t that Granger causality? Transfer entropy reduces to
Granger causality for vector auto-regressive processes!

Lionel Barnett, Adam B. Barrett, and Anil K. Seth Phys. Rev. Lett. 103, 238701



Transfer entropy

T (X → Y ) = I [X (past),Y (now)|Y (past)]



Transfer entropy

Transfer entropy is a sort of conditional mutual information.

I (X ,Y |Z )

and this suffers even more acutely from sampling problems.



Conditional mutual information
The metric Kozachenko-Leonenko estimator can be extended to
this case; it involves three-way intersections of the
nearest-neighbour sets.

A B C

I (X ,Y |Z ) ≈ 1

n

n∑
i=1

log

(
hxyz(i)h

hxz(i)hyz(i)

)



Ising model



Transfer Entropy



Transfer Entropy



Transfer Entropy



The End

THANK YOU!


