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Definition

In the metric-space approach to spike train analy-
sis, spike trains are regarded as points in a metric
space, that is, a space with a distance defined
between any pair of points.

Detailed Description

Spike Train Metrics
The Victor-Purpura metric (Victor and Purpura
1996) is one common way to define a metric
distance between spike trains. The Victor-Purpura
metric considers a fictional total cost for trans-
forming one spike train into another using three
basic operations: spike insertion, spike deletion,
and spike movement. Each basic operation is
given an individual cost, one for inserting or
deleting a spike and q|dt| for moving a spike a
temporal distance dt. The cost-per-time, q, is a
parameter, with the timescale 2/q thought of as
corresponding to the temporal precision of spike
times in the metric. The distance between the two
spike trains is then defined as the cost of the

cheapest transformation of one to the other. In
other words, the distance between spike trains
x and y is given by

d x, yð Þ ¼ min
g�G

c gð Þ ð1Þ

where g is a sequence of basic operations trans-
forming x to y, G is the set of all such sequences,
and c(g) is the cost of g, that is, the sum of the
individual costs of the basic operations that make
up g. This is not the only spike-train metric: there
is also the van Rossum metric (van Rossum 2001)
which is part of a kernelization approach to spike
trains (Paiva et al. 2009), and there are more
recent metrics like the synapse metric (Houghton
2009) and the ISI-distance (Kreuz et al. 2007).
These are reviewed and compared in, for example,
Victor (2005), Houghton and Victor (2012), and
Houghton and Kreuz (2013). There are also multi-
neuron metrics (Aronov et al. 2003; Houghton
and Sen 2008), which allow metric-based
methods to be applied to multiunit data.

In a metric-space approach to analyzing a col-
lection of spike trains, the data is reduced from a
set of complicated objects, spike trains, to a much
simpler object, the matrix of distances between
the trains.When applied to neural information, the
information contained in this matrix is used to
estimate information theory quantities for the
corresponding spike train data; typically the quan-
tity of interest is the mutual information between a
sensory stimuli and a spiking response. Of course,
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this reduction of the data to the distance matrix is a
simplification and it is likely that the metric will
not be sensitive to all the information-carry fea-
tures of the spike trains. This means that the infor-
mation contained in the distance matrix will
underestimate the true mutual information. How-
ever, it is hoped that metric-based methods will be
less prone to bias on small data sets than tradi-
tional approaches like the direct method described
in Strong et al. (1998). There are sophisticated
bias-reduction techniques developed for the direct
method (Nemenman et al. 2007; Paninski 2003;
Panzeri et al. 2007), and it is unclear as yet
whether bias is a substantial enough problem to
warrant consideration of metric-based methods.

The Transmitted Information
The transmitted information applies to situations
when the spiking data represents multi-trial
responses to a set of distinct data. In this case,
the spike trains can be clustered by stimulus and
the transmitted information estimates the mutual
information between this “true clustering” and
metric-based clustering. The transmitted informa-
tion is written in terms of a matching or confusion
matrix N. If the stimuli are labeled by s ¼ 1,. . .,
S and the responses are grouped into clusters
labeled c ¼ 1, . . ., C, then N is an S � C matrix
whose element nsc is the number of responses to
stimulus s placed in cluster c. This means that the
probability that a response to stimulus s is placed
in cluster c is estimated as p(s, c) � nsc/n, where
n ¼ �s¼1

S�c¼1
Cnsc is the total number of

responses. The transmitted information, h, mea-
sured in nats, is derived by substituting this into
the usual definition of the mutual information:

h¼ 1

n

XS

s¼1

XC

c¼1

nsc lnnrs�
XS

s¼1

ns lnns�
XC

c¼1

nc lnnc�n lnn

 !

ð2Þ

where, in an abuse of notation, nc¼�s ¼ 1
Snsc and

ns ¼�c ¼ 1
Cncs denote the row and column sums.

Although the transmitted information is
straightforward to calculate once the data have
been clustered, it does rely on a clustering algo-
rithm as well as a metric, and, in practice, the

transmitted information will substantially under-
estimate the mutual information. In fact, the con-
fusion matrix is often calculated by clustering the
data by stimulus, removing individual data points
one-by-one and deciding which cluster the test
point is closest to. This is not an unsupervised
clustering, and this transmitted information does
not measure the actual mutual information, it is
used as a comparative quantity, for example, it
was originally introduced in Victor and Purpura
(1996) as a way to determine the optimal value of
the parameter q in the Victor-Purpura metric.

A Kozachenko-Leonenko Estimate
In Kraskov et al. (2004) the mutual information is
estimated using the Kozachenko-Leonenko
k-nearest-neighbors estimator (Kozachenko and
Leonenko 1987). This approach is developed in
the case where the stimuli are also points in a
metric space, rather than points in a discrete
case, as was considered for the transmitted infor-
mation above. The Kozachenko-Leonenko esti-
mator requires the calculation of the rate of
change of the probability of finding a data point
as a sphere increases; in Kraskov et al. (2004) this
rate of change is calculated using the coordinate-
based measure and it is assumed the stimulus and
response spaces both have a well-defined dimen-
sion. These assumptions do not hold in the case of
the space of spike trains. However, different ks are
used in the stimulus and response spaces. This is
done to allow biases in the entropies H(R), H(S),
and H(R, S) to cancel, but, fortuitously, this is
done in such a way that all the terms that depend
on the dimension of the two spaces, or on the
volumes of spheres in those spaces, also cancel.
This leads to a formula which can be applied to
spike trains; in fact, it is possible to derive a
Kozachenko-Leonenko estimator for the mutual
information directly for metric spaces (Houghton
2015).

Let R be the random variable corresponding to
the spiking response and S the random variable
corresponding to the stimulus. S is now a contin-
uous random variable and could correspond to a
continuous stimulus, such as the position of a
foraging rat, or to another spike train. It is
assumed that there are metrics on both spaces;
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this in turn induces a metric on the space of
stimulus–response pairs:

d s1, r1ð Þ, s2, r2ð Þ½ � ¼ max d s1, s2ð Þ, d r1, r2ð Þ½ �
ð3Þ

Now, for a given set of experiments the data
consists of a set of stimulus–response pairs: {(s1,
r1), (s2, r2), . . ., (sn, rn)}. As a kth nearest neighbor
approach the estimate relies on a choice of a
positive integer k. Let d(i; k) be the distance
from (ri, si) to the kth nearest data-point, so d(i;
k) is the smallest distance such that

s j, r j

� �jd si, rið Þ, s j, r j

� �� �� � d i; kð Þgj ¼ k þ 1
��

ð4Þ

where the set has size k + 1 rather than k because it
includes the point (si, ri) itself. Now let

CS ið Þ ¼ ðs jjd si, s j
� �� � d i; kð Þgj�� ð5Þ

and

CR ið Þ ¼ ðr jjd ri, r j

� �� � d i; kð Þgj�� ð6Þ

Thus CS(i) is the number of stimuli with any
response within d(i; k) of si; this will, of course,
include the k data points counted when defining
d(i; k), but it may also include points (sj, rj) where
d(si, sj) � d(i; k) but d(ri, rj) > d(i; k). Hence
CS(i) � k. The same sort of observation applies
to CR(i). Roughly speaking, a separate k-nearest
neighbor estimate is calculated for H(R),H(S) and
H(R, S) with CR(i) � 1 and CS(i) � 1 playing the
role of k for H(R) and H(S). Now, the estimate of
the mutual information is

I R; Sð Þ ¼ c kð Þ þ c nð Þ � 1

n

X
c CS ið Þ½ �

� 1

n

X
c CR ið Þ½ �

ð7Þ

where c(x) is the digamma function of x.
If the stimulus space is discrete, the same

approach can still give an estimate of the mutual
information (Tobin and Houghton 2013). If there

are ns stimuli and each is presented nt times, the
mutual information is

I R; Sð Þ ¼ c kð Þ þ c nsntð Þ � c ntð Þ

� 1

n

X
c CR ið Þð Þ ð8Þ

In Tobin and Houghton (2013) a similar for-
mula is derived using a kernel-density-estimate
based approach. An alternative Kozachenko-
Leonenko estimate of the mutual information
between a discrete stimulus set and spiking
responses is given in Victor (2002).
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