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domain using non-negative quadratic programming

Conor Houghton

Abstract— Non-negative matrix deconvolution and elements are defined by
sparse decomposition are useful tools for source separatio LA 440
and acoustic object recognition. Here, a new algorithm for Aii — { i ij >
calculating a sparse decomposition of sound in the time J 0 otherwise
domain is derived using non-negative quadratic program- ¢ ihatA — A+

)

—A ™. Now, the potential is decomposed

ming. into three parts:
1
F,(v) = §VTA+V
|. INTRODUCTION Fy(v) = bly
1
: o R F(v) = -vIAv 3)
A signal is said to be sparse if its distribution has 2
a sharp peak and a fat tail: a sparse signal has bethF’ = F,, + F, — F,.. Three gradients are defined
small and large values more often than a Gaussian OF,(v)
distributed signal with the same variance. Recently, it has a; = 570 = A;EUj
been realized that it can be useful to decompose sound 8Fb(zv)
over a sparse basis, that is, a basis whose components bi = T ov. =b;
are sparse. Because different sparse components can aFC(Zv) _
often be treated as if they were different channels it is “ T T Av (4)

easier to separate sources and perform acoustic Ob](ﬁﬁgre, for clarity, we have used a summation convention

recognition on the. sparse poc!ed signal [1], [2], [3], [4 h which repeated over-lined indices are summed so that
[5]. Here, an algorithm for finding sparse representations

of sound is presented. It is based on non-negative matrix A;}v; = Z A;;vj. (5)
factorization and non-negative matrix deconvolution [6], j

[7]; however, while non-negative matrix deconvolution ispe multiplicative update rule is

a decomposition of the spectrographic representation of

sound, the algorithm presented here uses a recent result —b; + 1/b? + da;c;
on non-negative quadratic programming (NQP) [8], [9], Vi — 5. v; (6)

[10], to decompose sound in the time domain.
In [8], [9], [10], Sha and coworkers consider the basignd this converges to the minimum [10].
problem of quadratic programming with non-negative

constraints, minimizing the potential Non-negative matrix factorization (NMF) is very sim-

ilar to NQP [6]. Non-negative matrix factorization seeks
F(v) = %vTAv +bly (1) to minimize the Froebenius error

— 2
subject tov > 0. They discover an elegant multiplicative E=|N—-MEF| )

update rule which converges monotonically. There is Rgy an approximate factorization of a non-negative m
non-negativity constraint omA: non-negative matrices matrix N into

At and A~ consisting of the positive and negative N — MF (8)

. . . . whereM andF aren x ndr x m matri which
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Now, if the F matrix is regarded as fixed, NQP gives Now, we want to minimize the error

the update rule L
. FE = / dt(s — 5)? (14)
Nz’EFjE 0
Mij — | = M;; (10) : .
Nyl | wheret € [0, L] is the domain of the samplg(t). In
and, if M is fixed, it gives practice bot_h the WaV(_eform will be dlsc_retely sample_d
i and all the integrals will be sums over time steps. This
My, Ny means the problem is to minimize
F;; — _ F;. (12)
My Ny | E =5;5; — 2SEHE,;A5E + HEI}AEI}Hl‘ijim (15)
In fact, in NMF, neither matrix is fixed and both updategnere
are performed simultaneously. NMF has weaker conver-
gence properties than NQP: each iteration redugdsut Si = s(idt)
convergence is difficult to establish [11], [12], [13]. H;; = hi(jot) .
NMF has proved effective at extracting features from Hy, = Hygr) = hi(jot - kdt)
data sets. For example, one of the illustrative application i = ai(jot) (16)

given in the original paper [6] is a corpus of faces and thg i the time step and the non-negative constraint means
NMF features are recognizable of parts of faces. Nog\I, > 0.

negative matrix deconvolution (NMD), an extension of vE o . .
NMF in which factorization is replaced by deconvolu- For fixed basisd;; the NQP algorithm can be applied.

. . . In principle this is a straightforward calculation, but
tion [7] is useful for decomposing sound spectrograms. . . 2 .
The purpose of this paper is to use the NQP formu rom a notational point of view it is complicated by the

need to find an update fdi;; rather than the{;;;, that

to introduce an NMD-like algorithm for decomposinga pear in the expression fdF. This requires a change

sound in the time domain. The purpose of the algorithi} : : .
; . . . index changing the ordinary convolutions to forward
is to find sparse components of sound without using the .

nvolutions. Thus, for example.

spectrogram, thereby avoiding the down-sampling afid
_reconstruct!on errors typical of spectrogram methods. It o Hyp A = —2/dt/d7's(t)hz~(t—7')ai(7') 17)
is also particularly easy to add a sparseness term to the J
objective function in this algorithm. becomes

_QSﬁ%HﬂAﬁc = —2/dt/d7’$(t—|—7’)hi(t)ai(7') (18)

_ . _ after the change of index, whe®, = s(jot + kdt).
The problem considered here is to approximatefyow

II. THE ALGORITHM

decompose a sound wavefortt) as
. —bij + /b3 + daijci
i(t) = / dr hi(t — 7)az (1) (12) Hij = 20, Hij 19
0
where the compactly-supported r) are the sound basiswhere
and theh;(t) are the components over that basis; for later I
use letV be the number of components, so the sum over ZU - ngjji T u’chE
i1s iy T TPk k _
N T cj = A-St 4+ ALS (20)
=% / drhi(t— Dag(r).  (13) ! ikZgk ik gk
=10 where )
As a constraint we requiré(t) > 0. The main point Si = Hiipdj (21)

of this algorithm is to calculate a decomposition witRnd §;, = S, .. The superscript- refer to the positive
a non-negative component. The reason that this migf{tnegative parts, as in (2) above.

be deswable_ is two fold; first, haV|r)g a no_n-n_egatl\(e In contrast, since the basis is unconstrained, it can be
component is useful for the potential applications if,qateq exactly by minimizingg: by differentiating, the
source separation and acoustic object recognition aﬂﬁnimizing A.. satisfies ’
second, sparsification is particularly straight-forwafd | “

the component is non-negative. SkHir; = Higi Higm A, (22)



and, although the formulation of the problem has creatednstrained space are

lots of indices, this is basically a matrix equation: oL
—— =0
Vi=MjA; (23) N1 0A;
oL =
where we have vectorized by setting = Ni + 7, L Z AfA;—1 = 0 (28)
J = Ni+m, Vi = SHyg;, M1y = Hy; Hy,, andA; = Hi NG

Ay M will generally be invertible provided/ < L/dt. anq these can be solved using a numerical root finder.

In practical tests on sample data, an algorithm which hi lorith be f lated
alternates between the NQP (22) updates of the compo!:rom this, two algorithms can be formulated. In

nents and the least squares updates of the basis (23) fiigs 'St the NPQ update is iterated until the objective

a good approximation to the original sound wavefornﬁ‘.mcuon equilibrates, reaching a minimum for that value

However, the corresponding componeritgt), are not of the basisa;s.

particularly sparse. Algorithm 1

Obviously the best way to ensure sparseness is to adfitialize A,; and H;;.
a sparseness term fo. This is particularly easy because

h is non-negative: Until the objective functionF, (25), equilibrates:
L L
E :/ dt(s — 3)* +2)\Z/ dth;,  (24) NQP update:
0 i 70 Until E equilibrates:
where )\ is a parameter fixing the relative importance CalculateS;
of accuracy and sparseness; the factor of two is a UpdateH;; using (26)

notational convenience. Now, sincg(t) «— oa;(t),
hi(t) < h;(t)/o does not alteg(t), but will, for o > 1,

reduceF, trying to minimizing thisE will lead to the Least squares update

components getting smaller and smaller and the basis CalculateVr and My;. _
larger and larger. One way to stop this is to fix the size Minimize £ by numerically solving (28)
of the a;(¢). Thus, the new objective function is
L L . .
E — / dt(s—§)2—|—2)\2/ dt b In the §econd the NPQ upd_ate is only |terated_for a
0 —~Jo small, fixed number of iterations before the basjs
T are changed in the least squares update.
+> (/ dta§—1> (25)
i 0 Algorithm 2
where theu; are Lagrange multipliers. Converting this
to matrix notation, the NQP step becomes Initialize A;; and H;;.
—(bs — )2 o
Hy — [ (bij — A) + \/Q(bw N +4aUCU] Hij Until the objective function®, (25), equilibrates:
aij
(26) NQP update:
with a;;, b;; andc;; unchanged from before (20). For a fixed number of iterations:
CalculatesS;
The least squares update is now more difficult: it is UpdateH;; using (26)

now a constrained quadratic programming problem and
can not be solved exactly. However numerically, it just

means solving the Newton equations for Least squares update

CalculateV; and M7 .

gl Minimize E by numerically solving (28)

F = —2VjAj+AijjAj+Z,u@' Z (AjAj—l)
i I=N(i—1)
+terms independent ofl;.

27) .
( Ir)elther case, the NPQ and least squares update alternate
The Newton equations for the extremum within thantil the objective functionF equilibrates. In fact, for



the sample described in the next section, Sect. lll,
Algorithm 2 is much more effective, equilibrating faster.[l]

I1l. RESULTS

As an example the Algorithm 2 has been applied t

recorded speech. The sampleas taken from librivox, a

public domain collection of poetry read and recorded b
amateur volunteersThe sample used was two minutes
long. It was downloaded as ogg vorbis and converted

to a waveform down-sampled to 8kHz usiagx. 3 The
number of componenty is set to 204t is set equal the

sample rate, sét = .125 ms and the width of the basis

functionsa;(7) is 2.5 ms, meaning thal’/ét is also 20.

In each iteration the NQP update was iterated four times,
the a; were then updated using the Newton Equation
routine described in [14]. The basis were initialized asg)

a;(t) = sin %t sin f;t (29)

where thefy = 7n/26t, fi9 = 2n/T and the others

are evenly spaced in between. The components we
initialized randomly with each;; assigned a random

number between zero an@03. It is likely that the

speed of the algorithm could be improved if some more
sample-specific choice of initialf;; values was made,

for example, varying the range of the random value
used does effect the run time. Increasing the number

of components and the width af; improves the final
result, but increases the time each iteration takes.

If the sparseness parameter is zero,= 0, the
estimated sound(t) approaches the recordingt). For

A = .0005 convergence requires 48 NPQ updates. The

resulting approximation is not particularly good:

s—§)2
1/fd}(dTQ)%.ogg (30)

This is because the approximation underestimates the

recording in order to increase sparseness.

Where the algorithm does succeed is in produci
sparse components. Thig(¢) are very sparse. Across
the twenty components, 0.86 of ti#&; have values less

than10~5; the average value of the;; which are greater

than 10~ is .0025. | believe that sparse components of
this sort will be useful in applications of sparse-coding

based methods.
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1The Ballad of Reading Gaol by Oscar Wilde, read by John

Gonzales.
2http://1ibrivox.org/
Shtt p: / / sour cef or ge. net / proj ect s/ sox/
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