
1

The sparse decomposition of sound in the time
domain using non-negative quadratic programming.

Conor Houghton

Abstract— Non-negative matrix deconvolution and
sparse decomposition are useful tools for source separation
and acoustic object recognition. Here, a new algorithm for
calculating a sparse decomposition of sound in the time
domain is derived using non-negative quadratic program-
ming.

I. INTRODUCTION

A signal is said to be sparse if its distribution has
a sharp peak and a fat tail: a sparse signal has both
small and large values more often than a Gaussian
distributed signal with the same variance. Recently, it has
been realized that it can be useful to decompose sound
over a sparse basis, that is, a basis whose components
are sparse. Because different sparse components can
often be treated as if they were different channels it is
easier to separate sources and perform acoustic object
recognition on the sparse coded signal [1], [2], [3], [4],
[5]. Here, an algorithm for finding sparse representations
of sound is presented. It is based on non-negative matrix
factorization and non-negative matrix deconvolution [6],
[7]; however, while non-negative matrix deconvolution is
a decomposition of the spectrographic representation of
sound, the algorithm presented here uses a recent result
on non-negative quadratic programming (NQP) [8], [9],
[10], to decompose sound in the time domain.

In [8], [9], [10], Sha and coworkers consider the basic
problem of quadratic programming with non-negative
constraints, minimizing the potential

F (v) =
1

2
v

T
Av + b

T
v (1)

subject tov ≥ 0. They discover an elegant multiplicative
update rule which converges monotonically. There is no
non-negativity constraint onA: non-negative matrices
A

+ and A
− consisting of the positive and negative

Manuscript received 30 March 2008. Science Foundation Ireland
grant 06/RFP/BIM020 and support by the Mathematics Applications
Consortium for Science and Industry are acknowledged.

School of Mathematics, Trinity College Dublin, Dublin 2, Ireland
e-mail: houghton@maths.tcd.ie

elements are defined by

A±

ij =

{
±Aij ±Aij > 0
0 otherwise

(2)

so thatA = A
+−A

−. Now, the potential is decomposed
into three parts:

Fa(v) =
1

2
v

T
A

+
v

Fb(v) = b
T
v

Fc(v) =
1

2
v

T
A

−
v (3)

so F = Fa + Fb − Fc. Three gradients are defined

ai =
∂Fa(v)

∂vi

= A+
ij̄
vj̄

bi =
∂Fb(v)

∂vi

= bi

ci =
∂Fc(v)

∂vi

= A−

ij̄
vj̄ (4)

where, for clarity, we have used a summation convention
in which repeated over-lined indices are summed so that

A+
ij̄

vj̄ =
∑

j

A+
ijvj. (5)

The multiplicative update rule is

vi ←



−bi +

√
b2
i + 4aici

2ai


 vi (6)

and this converges to the minimum [10].

Non-negative matrix factorization (NMF) is very sim-
ilar to NQP [6]. Non-negative matrix factorization seeks
to minimize the Froebenius error

E = ‖N−MF‖2 (7)

for an approximate factorization of a non-negativen×m
matrix N into

Ñ = MF (8)

whereM and F are n × r and r × m matrices which
are constrained to being non-negative. Expanding outE
gives

E = Nīj̄Nīj̄ − 2Mīj̄Fj̄k̄Nīk̄ + Mīj̄Fj̄k̄Mīl̄Fl̄k̄. (9)



2

Now, if the F matrix is regarded as fixed, NQP gives
the update rule

Mij ←

[
Nik̄Fjk̄

Ñil̄Fjl̄

]
Mij (10)

and, if M is fixed, it gives

Fij ←

[
Mk̄iNk̄j

Ml̄iÑl̄j

]
Fij . (11)

In fact, in NMF, neither matrix is fixed and both updates
are performed simultaneously. NMF has weaker conver-
gence properties than NQP: each iteration reducesE, but
convergence is difficult to establish [11], [12], [13].

NMF has proved effective at extracting features from
data sets. For example, one of the illustrative applications
given in the original paper [6] is a corpus of faces and the
NMF features are recognizable of parts of faces. Non-
negative matrix deconvolution (NMD), an extension of
NMF in which factorization is replaced by deconvolu-
tion [7] is useful for decomposing sound spectrograms.
The purpose of this paper is to use the NQP formula
to introduce an NMD-like algorithm for decomposing
sound in the time domain. The purpose of the algorithm
is to find sparse components of sound without using the
spectrogram, thereby avoiding the down-sampling and
reconstruction errors typical of spectrogram methods. It
is also particularly easy to add a sparseness term to the
objective function in this algorithm.

II. T HE ALGORITHM

The problem considered here is to approximately
decompose a sound waveforms(t) as

s̃(t) =

∫ T

0
dτ hī(t− τ)aī(τ) (12)

where the compactly-supportedai(τ) are the sound basis
and thehi(t) are the components over that basis; for later
use letN be the number of components, so the sum over
i is

s̃(t) =
N∑

i=1

∫ T

0
dτ hi(t− τ)ai(τ). (13)

As a constraint we requireh(t) ≥ 0. The main point
of this algorithm is to calculate a decomposition with
a non-negative component. The reason that this might
be desirable is two fold; first, having a non-negative
component is useful for the potential applications in
source separation and acoustic object recognition and,
second, sparsification is particularly straight-forward if
the component is non-negative.

Now, we want to minimize the error

E =

∫ L

0
dt(s − s̃)2 (14)

where t ∈ [0, L] is the domain of the samples(t). In
practice both the waveform will be discretely sampled
and all the integrals will be sums over time steps. This
means the problem is to minimize

E = SīSī − 2Sj̄Hīj̄k̄Aīk̄ + Hīj̄k̄Aīk̄Hl̄j̄m̄Aīm̄ (15)

where

Si = s(iδt)
Hij = hi(jδt)

Hijk = Hi(j−k) = hi(jδt− kδt)
Aij = ai(jδt) (16)

δt is the time step and the non-negative constraint means
Hijk > 0.

For fixed basisAij the NQP algorithm can be applied.
In principle this is a straightforward calculation, but
from a notational point of view it is complicated by the
need to find an update forHij rather than theHijk that
appear in the expression forE. This requires a change
of index changing the ordinary convolutions to forward
convolutions. Thus, for example.

−2Sj̄Hīj̄k̄Aīk̄ ≡ −2

∫
dt

∫
dτs(t)hī(t− τ)aī(τ) (17)

becomes

−2Sj̄k̄Hīj̄Aīk̄ ≡ −2

∫
dt

∫
dτs(t+ τ)hī(t)aī(τ) (18)

after the change of index, whereSjk = s(jδt + kδt).
Now

Hij ←



−bij +

√
b2
ij + 4aijcij

2aij


 Hij (19)

where

aij = A+
ik̄

S̃+
jk̄

+ A−

ik̄
S̃−

jk̄

bij = −Sjk̄Aik̄

cij = A−

ik̄
S̃+

jk̄
+ A+

ik̄
S̃−

jk̄
(20)

where
S̃i = Hj̄ik̄Aj̄k̄ (21)

and S̃ik = S̃i+k. The superscript± refer to the positive
or negative parts, as in (2) above.

In contrast, since the basis is unconstrained, it can be
updated exactly by minimizingE: by differentiating, the
minimizing Aij satisfies

Sk̄Hik̄j = Hik̄jHl̄k̄m̄Al̄m̄ (22)



3

and, although the formulation of the problem has created
lots of indices, this is basically a matrix equation:

VI = MIJ̄AJ̄ (23)

where we have vectorized by settingI = Ni + j,
J = Nl+m, VI = Sk̄Hik̄j , MIJ = Hik̄jHlk̄m andAJ =
Alm. M will generally be invertible providedN < L/δt.
In practical tests on sample data, an algorithm which
alternates between the NQP (22) updates of the compo-
nents and the least squares updates of the basis (23) finds
a good approximation to the original sound waveform.
However, the corresponding components,hi(t), are not
particularly sparse.

Obviously the best way to ensure sparseness is to add
a sparseness term toE. This is particularly easy because
h is non-negative:

E =

∫ L

0
dt(s− s̃)2 + 2λ

∑

i

∫ L

0
dt hi (24)

where λ is a parameter fixing the relative importance
of accuracy and sparseness; the factor of two is a
notational convenience. Now, sinceai(t) ← σai(t),
hi(t)← hi(t)/σ does not alter̃s(t), but will, for σ > 1,
reduceE, trying to minimizing thisE will lead to the
components getting smaller and smaller and the basis
larger and larger. One way to stop this is to fix the size
of the ai(t). Thus, the new objective function is

E =

∫ L

0
dt(s− s̃)2 + 2λ

∑

i

∫ L

0
dt hi

+
∑

i

µi

(∫ T

0
dt a2

i − 1

)
(25)

where theµi are Lagrange multipliers. Converting this
to matrix notation, the NQP step becomes

Hij ←

[
−(bij − λ) +

√
(bij − λ)2 + 4aijcij

2aij

]
Hij

(26)
with aij , bij andcij unchanged from before (20).

The least squares update is now more difficult: it is
now a constrained quadratic programming problem and
can not be solved exactly. However numerically, it just
means solving the Newton equations for

E = −2VĪAĪ + AĪMĪ J̄AJ̄ +
∑

i

µi

Ni−1∑

I=N(i−1)

(AĪAĪ − 1)

+terms independent ofAI . (27)

The Newton equations for the extremum within the

constrained space are

∂L

∂AI

= 0

∂L

∂µi

=

Ni−1∑

I=N(i−1)

AĪAĪ − 1 = 0 (28)

and these can be solved using a numerical root finder.

From this, two algorithms can be formulated. In
the first the NPQ update is iterated until the objective
function equilibrates, reaching a minimum for that value
of the basisais.

Algorithm 1

Initialize Aij andHij.

Until the objective functionE, (25), equilibrates:

NQP update:
Until E equilibrates:

CalculateS̃i

UpdateHij using (26)

Least squares update:
CalculateVI andMIJ .
Minimize E by numerically solving (28)

In the second the NPQ update is only iterated for a
small, fixed number of iterations before the basisais
are changed in the least squares update.

Algorithm 2

Initialize Aij andHij.

Until the objective functionE, (25), equilibrates:

NQP update:
For a fixed number of iterations:

CalculateS̃i

UpdateHij using (26)

Least squares update:
CalculateVI andMIJ .
Minimize E by numerically solving (28)

In either case, the NPQ and least squares update alternate
until the objective functionE equilibrates. In fact, for



4

the sample described in the next section, Sect. III,
Algorithm 2 is much more effective, equilibrating faster.

III. R ESULTS

As an example the Algorithm 2 has been applied to
recorded speech. The sample1 was taken from librivox, a
public domain collection of poetry read and recorded by
amateur volunteers.2 The sample used was two minutes
long. It was downloaded as ogg vorbis and converted
to a waveform down-sampled to 8kHz usingsox. 3 The
number of componentsN is set to 20,δt is set equal the
sample rate, soδt = .125 ms and the width of the basis
functionsai(τ) is 2.5 ms, meaning thatT/δt is also 20.
In each iteration the NQP update was iterated four times,
the ai were then updated using the Newton Equation
routine described in [14]. The basis were initialized as

ai(t) = sin
πt

T
sin fit (29)

where thef0 = π/2δt, f19 = 2π/T and the others
are evenly spaced in between. The components were
initialized randomly with eachHij assigned a random
number between zero and0.03. It is likely that the
speed of the algorithm could be improved if some more
sample-specific choice of initialHij values was made,
for example, varying the range of the random values
used does effect the run time. Increasing the number
of components and the width ofai improves the final
result, but increases the time each iteration takes.

If the sparseness parameter is zero,λ = 0, the
estimated sound̃s(t) approaches the recordings(t). For
λ = .0005 convergence requires 48 NPQ updates. The
resulting approximation is not particularly good:

√∫
dt (s − s̃)2∫

dt s2
≈ .098 (30)

This is because the approximation underestimates the
recording in order to increase sparseness.

Where the algorithm does succeed is in producing
sparse components. Thehi(t) are very sparse. Across
the twenty components, 0.86 of theHij have values less
than10−6; the average value of theHij which are greater
than10−6 is .0025. I believe that sparse components of
this sort will be useful in applications of sparse-coding
based methods.

ACKNOWLEDGMENT

B. Pearlmutter is thanked for useful conversation.

1The Ballad of Reading Gaol by Oscar Wilde, read by John
Gonzales.

2http://librivox.org/
3http://sourceforge.net/projects/sox/

REFERENCES

[1] P. D. O’Grady, B. A. Pearlmutter, and S. T. Rickard, “Survey
of sparse and non-sparse methods in source separation,”Inter-
national Journal of Imaging Systems and Technology, no. 1, pp.
18–33, 2005.

[2] S. A. Abdallah and M. D. Plumbley, “Unsupervised analysis of
polyphonic music using sparse coding,”IEEE Transactions on
Neural Networks, vol. 17, no. 1, pp. 179–196, January 2006.

[3] H. Asari, B. A. Pearlmutter, and A. M. Zador, “Sparse
representations for the cocktail party problem,”Journal of
Neuroscience, vol. 26, no. 28, pp. 7477–7490, 2006.

[4] H. Asari, R. Olsson, B. Pearlmutter, and A. Zador,
Sparsification for monaural source separation. Springer
Verlag, 2007.

[5] M. G. Jafari, S. A. Abdallah, M. D. Plumbley, and
M. E. Davies, “Sparse coding for convolutive blind audio
source separation,” inProceedings of the 6th International
Conference on Independent Component Analysis and Blind
Source Separation (ICA 2006), March 2006, pp. 132–139.

[6] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,”Nature, vol. 401, no. 6755,
pp. 788–91, 1999.

[7] P. Smaragdis, “Discovering auditory objects through non-
negativity constraints,” inStatistical and Perceptual Audio
Processing (SAPA), 2004.

[8] F. Sha, L. K. Saul, and D. D. Lee, “Multiplicative updates
for nonnegative quadratic programming in support vector
machines,” in Advances in Neural Information Processing
Systems 15, S. T. S. Becker and K. Obermayer, Eds.
Cambridge, MA,: MIT Press, 2003, pp. 1041–1048.

[9] ——, “Multiplicative updates for large margin classifiers,”
in Proceedings of the Sixteenth Annual Conference on
Computational Learning Theory (COLT), Washington D.C.,
USA, 2003.

[10] F. Sha, Y. Lin, L. K. Saul, and D. D. Lee, “Multiplicative
updates for nonnegative quadratic programming,”Neural
Computation, vol. 19, no. 8, pp. 2004–2031, 2007.

[11] L. Finesso and P. Spreij, “Approximate Nonnegative
Matrix Factorization via Alternating Minimization,”ArXiv
Mathematics e-prints, Feb. 2004.

[12] E. F. Gonzales and Y. Zhang, “Accelerating the lee-seung
algorithm for non-negative matrix factorization,” Dept. Comput.
Appl. Math., Rice University, Houston, TX, Tech. Rep., 2005.

[13] C.-J. Lin, “On the convergence of multiplicative update
algorithms for nonnegative matrix factorization,”Neural
Networks, IEEE Transactions on, vol. 18, no. 6, pp.
1589–1596, Nov. 2007.

[14] W. T. V. William H. Press, Saul A. Teukolsky and B. P.
Flannery,Numerical recipes 3rd edition: the art of scientific
computing, 3rd ed. Cambridge University Press, 2007.


