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Abstract

The van Rossum metric measures the distance between two spike
trains. Measuring a single van Rossum distance between one pair of
spike trains is not a computationally expensive task, however, many
applications require a matrix of distances between all the spike trains
in a set or the calculation of a multi-neuron distance between two
populations of spike trains. Moreover, often these calculations need
to be repeated for many different parameter values. An algorithm is
presented here to render these calculation less computationally expen-
sive, making the complexity linear in the number of spikes rather than
quadratic.

Introduction

The van Rossum metric is used to calculate a distance between two spike
trains (van Rossum, 2001). It has been shown to be a good metric in the
sense that the distance between multiple responses to the same stimulus is
typically smaller than the distance between responses to different stimuli
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(Machens et al., 2003; Narayan et al., 2006). Like some other spike train
distances (Victor and Purpura, 1996), the van Rossum metric depends on a
parameter 7 which determines the time scale in the spike trains to which the
metric is sensitive. In the 7 — oo limit of the parameter range the metric
measures the difference in spike numbers while in the other limit, where
7 =0, it counts non-coincident spikes.

If the two spike trains have roughly the same number of spikes, n say,
then the complexity of the calculation of the van Rossum metric is of or-
der n2. Often an entire distance matrix is required containing the pairwise
distances between all the spike trains in a set. This is needed, for example,
when calculating a preferred value of the time scale 7: the standard method
involves metric clustering and this requires the calculation of a distance ma-
trix for multiple values of the time scale (Victor and Purpura, 1996; Machens
et al., 2003; Wohlgemuth and Ronacher, 2007; Narayan et al., 2006; Toups
et al., 2011). The optimal time scale is sometimes interpreted as indicative
time scale for the temporal precision in coding. Although this interpretation
should be treated with some caution (Chicharro et al., 2011), the optimal
time scale is nonetheless useful as a way of maximizing the performance of
the metric in applications. If there are N spike trains in the set, calculating
the van Rossum distance matrix is, at face value, an order N?n? calculation.
For large data sets this can be a considerable computational burden.

The same holds true for a number of variations of the van Rossum met-
ric such as the synapse-like metric introduced in (Houghton, 2009) and the
multi-neuron metric (Houghton and Sen, 2008). The latter is designed to
estimate the distance between two sets of neuronal population responses and
is particularly troublesome from the point of view of computational expense.

Here, a trick is presented to reduce the computational cost for all three
of these cases: For the regular van Rossum distance between two spike trains
of length n the cost is reduced from order n? to order n and, hence, the
cost of calculating a matrix of distances for N such spike trains from order
N?n? to order N?n. The same speed-up is obtained for the van Rossum-
like metrics. Similarly, in the multi-neuron case the cost of calculating the
distance between two populations of P spike trains each will be reduced from
order P?n? to order P%n.



Methods

The van Rossum metric

To describe the van Rossum distance it is useful to first define a map from
spike trains to functions: given a spike train

u = {ug,ug, -, Uy} (1)

it is mapped to f(¢;u) by filtering it with a kernel A(t):
ue f(tu) =Y At —u). (2)
i=1

The kernel function has to be specified, here, as in (van Rossum, 2001), the
causal exponential is used

wo={ S $50 - ®)

The decay constant 7 is the time scale which parameterizes the metric.

The van Rossum metric is induced on the space of spike trains by the L?
metric on the space of functions. In other words, the distance between two
spike trains u and v is given by

d(u,v;7) = \/g /OOO di[f(t;u) — f(t;v)]* (4)

where the normalizing factor of 2/7 is included so that there is a distance of
one between a spike train with a single spike and one with no spikes. In fact,
for the causal exponential filter this integral can be done explicitly to give a
distance (Schrauwen and Van Campenhout, 2007; Paiva et al., 2009)

[d(u,v; 7)]2 — Z e lui—usl/T Z e~ lvi—vjl/T

4,J

Z7j
_Qze—lui—vjl/ﬁ (5)
0,

Now, the trick relies on the calculation of an extra vector for each spike
train in the set; this extra vector will be called the markage vector. Given a
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spike train u, the markage vector m(u) will have the same number of element
as there are spikes, so #(m(u))=#(u). The entries in the markage vector
are defined recursively so that m; = 0 and

m; = (mi,1 + 1)67(%7%71)/7. (6)

This means

m; = Z o~ (wi—uy)/7 (7)
Jlui>u;
where jlu; > u; indicates that the sum is restricted to values of j where
u; < u;. In fact, it will be assumed here that the spike times are in ascending
order, which in most real situations they will be; this means that j|lu; >
u; is actually equivalent to j < 7. However, note that this notation for
restricted values of an index is used below in other contexts where it can not
be simplified in this way. Also, when needed for clarity the notation m;(u)
will be used for the ith component of m(u), but in the above, the argument
has been left out for brevity. The function f(¢) is discontinuous and m; is
equal to the left limit of f(¢) at u;:
m; = f(u;—) = lim f(). (8)
t—u;—

The idea is to use the markage vector to reduce the double sums in the
expression for d(u,v), Eq. 5, to single sums. For convenience this equation

is first rewritten to avoid the use of the absolute value

[d(ll,V;T)]Q _ n1;—n2+z Z 6—(ui—uj-)/7'+z Z 6—(Ui—Uj)/T

i jlui>uy i jlui>vg

_Z Z e_(“"_”j)/T—Z Z e~ wi—uy)/7 (9)

i j\ui>vj i j\vi>uj-

where n; = #(u) and ny = #(v) are the number of spikes in the two spike

trains. This yields
YOS e =N ). (10)

7 j|ui>uj-

The cross-like terms are trickier, let J(i) denote the index of the last spike
time in v that is earlier than wu;, hence

J (i) = max (j|u; > vj), (11)
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which leads to

Z Z e~ (wi—vy)/T Ze—(ui—vJ(i))/T Z e~ Wi =vy)/T

i jlui>v; i Jlviy2v;

= Zef(uifv.l(i))/T 1+ Z e~ i@ —v)/T

Jlvsy>v;
= Ze_(ui—'UJ(i))/T [1 + My (V)] . (12)
Since the other two terms in the expression for d(u,v) are identical to the

two above with u and v switched they can be calculated in the same way,
so, for example,

S Y G = S e [ (] (19)

i jlvi>uy i

where K (i) = max (j|v; > u;), the analog of J(i) with u and v switched.

For time ordered spike trains, this reduces the calculation of all four
terms from n? to n. The two cross terms, containing times from both u
and v are the most important since when calculating a distance matrix these
are the most expensive, involving N?n? calculations without markage, the
two square terms need only be calculated once for each spike train and are
therefore linear in V.

Using the markage vector does introduce extra calculations. Along with
the calculation of the markage vector itself, there is the need to calculate
J (i), the index of the time on one spike train immediately prior to the ith
time in the other. If the spike trains were not time ordered this calculation
would be order n?; however, for the more biologically relevant case of time
ordered spike trains, J(i) can be calculated iteratively by advancing it from
its previous value when necessary. It is seen below that the constant prefactor
to N2n in the algorithm with markage is larger than the prefactor to N?n? in
the traditional algorithm, but that it is worthwhile using the new algorithm
even for quite short spike trains.

Other van Rossum-like metrics

There are a number of variations of the van Rossum metrics. One generaliza-
tion is to consider other kernels. In the standard formulation the kernel h(t)
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is a causal exponential, Eq. 3, but other kernels can be used: a square pulse
or normal curve are popular alternatives. It is also possible to regard the
exponential factors in the integrated formula, Eq. 5 as kernels and replace
these with other functions (Schrauwen and Van Campenhout, 2007). The
algorithm proposed here will not, in general, be useful for these other cases.
It might be possible to generalize the sum formula for the markage, Eq. 7,
but this is an order n? calculation and would contribute Nn? to the overall
calculation of a distance matrix. In the causal exponential case considered
here there is also an iterative formula for the markage, Eq. 6. This will not
work for all choices of kernel.

There is, however, another generalization of the van Rossum metric in
which the map from spike trains to functions is viewed as a differential equa-
tion, rather than as a filtering. In this description, u is mapped to f(¢;u)
where

daf

Tdt =—f (14)

with discontinuities
fuit) = flui—) +1 (15)

at the spikes. The synapse-like metric introduced in (Houghton, 2009) changes
the map from spike trains to functions in order that it mimics aspects of the
synaptic conductivity. Specifically, it accounts for the depletion of available
binding sites by changing how much f is increased by each spike; f(t;u) is
defined as the solution to the differential equation

fluit) = (1 =p)flui—) +1 (16)

at the spike times w;. The first parameter 7, as before, is a time scale,
associated with the precision of spiking, while the second parameter y reflects
a reduction of the significance of spike timing in spike clusters.

To calculate the integrated form of this distance it is convenient to first
define an increment vector §(u), where §; = 1 and

51' =1- 12 Z 51'67(%71”)/7. (17)

j‘ui>u]'

The quantity d; is equal to the increment in f(t;u) at w;. Now, letting



a =46(u) and 3 = §(v) the synapse distance is

d(“—; V) = Z CYZ'CY]B*'“”‘*“J'VT + Z ﬁiﬁjef\vifvj\/ﬂ—
— =

2y
—2) " a el (18)
i,

Again, this calculation can be made more efficient using a markage vector;
this time it will have the form

m; = Z 51.67(%7%)/7. (19)

Jlui>ug

The markage and increment vector can be calculated iteratively in leap-frog
fashion

m; = (M + 6y )e” /T

For example,

;o e lwimygl/m o o’ +2 o P (Vi
> ey dooi+2)y i o
= a; (o + 2my;) J (21)
Z

i

with similar expressions for the other terms; in short, the formulae for the
efficient calculation of the synapse metric only differ from formulae for the
original van Rossum metric in the inclusion of the components of the incre-
ment vector.

The multi-neuron van Rossum metric

There is also a multi-neuron van Rossum metric (Houghton and Sen, 2008)
which was proposed as tool for quantifying if and how populations of neurons
cooperate to encode a sensory input. Here, computational expense is an even
more acute problem but the same trick can be used.

In this setup there are two population responses, each with P spike trains:
U= {u,u? ... ul} and V = {u',u? ... u’”}. Spikes are represented as
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uy and vf with i = 1,.,nL and j = 1,..,n? where n, and n{ denote the
numbers of spikes in the pth and gth spike train of the populations ¢ and V,
respectively. By locating the P spike trains of the two population responses
U and V in a space of vector fields, with a different unit vector assigned to
each neuron, interpolation between the two extremes, the labeled line (LL)
coding and the summed population (SP) coding, is achieved by varying the
angle 6 between unit vectors from zero (SP) to /2 (LL) or, equivalently, the
parameter ¢ = cos # from one to zero:

dU,V;7) = %Z </Om|5p\2dt+02/om5p5th> (22)

q#p

with 6, = f(t,u?) — f(t, vP).

In the original description in (Houghton and Sen, 2008) the metric is
described in terms of the unit vectors corresponding to each neuron in the
population. In the formula above the dot-products between the unit vectors
have already been performed, giving a simpler formula.

Similar to the single-neuron case (Schrauwen and Van Campenhout, 2007;
Paiva et al., 2009) the multi-neuron van Rossum distance can also be esti-
mated in a more efficient way by integrating analytically:

AU, Vi) = [ <R,,+ c ZR,,q> (23)

P q#p

with
Ry =3 eliullir f N7 ol _ g3 o eflir (24)
ij i,J i,J

being the bivariate single neuron distance, as in Eq. 5, between the p-th
spike trains of u and v and

qu _ 2 :ef\uffu;ﬂ/T + 2 :ef\vffvg\/ﬂ- N 2 :€f|uffvg\/7 N 2 :ef\vffu;”/T (25>
2 i, i,J .3

representing the cross-neuron terms that are needed to fully capture the
activity of the pooled population. As in the estimate in Eq. 22 the variable
c interpolates between the labeled line and the summed population distance.



These are the two equations for which the markage trick can be applied
since all of these sums of exponentials can be rewritten using markage vectors
in the same way as it was done in Eqs. 9, 10, and 12, so, taking the first
term in R,, as an example

S el Z ™0 1 4 my ()]

i,
+ Z 07 (14 g (u?)] (26)

In case of 7 = oo Eq. 23 remains still valid, however, the calculation of
the contributing terms simplifies to

Ry = ni(ny, — n}) +ni(n) —nl) (27)
and
Ry = nl(n —n2) + nf(n) — ) + nl(n — ) +ni(nf — nt).  (28)

If 7 = o0 and ¢ = 1, the calculation of the population van Rossum distance
D simplifies even further:

D(u,v;7) = VR (29)

with

R:ini P —nP) —|—Zn

p=1 p=1 p=1 p

N P
—nb). (30)
=1

There is a generalization of this metric in which there are many different
angles, or equivalently, many different ¢ parameters; this allows each pair
of neurons to lie on a different point in the interpolation between summed
coding and labeled coding (Houghton and Sen, 2008). The simplifications

discussed here can also be applied in this case.

Results

The algorithm of the regular van Rossum metric was tested using simulated
spike trains. The spike trains were generated as a homogeneous Poisson pro-
cess with rate 30Hz. The algorithm (with the timescale set to 7 = 12ms)
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Figure 1: Van Rossum metric: Run times plotted against spike train length.
Here the run time 7T is plotted against spike train length L for the traditional
algorithm and the algorithm with markage. T and L are both measured
in seconds; the data set contains 100 spike trains and for each value of L
the whole matrix of pairwise distances is calculated and the time calculated
by averaging over 200 trials. The line and parabola are least square fits
calculated using wolframalpha.com.

was implemented in C++ and run times were compared to the same algorithm
without the markage method. A further optimization was considered: the
exponential factors of the form exp (to/7) and exp (—to/7), with t, a spike
time, were calculated just once at the start. Although this improvement does
not alter the dependence on n, the number of spikes, it does speed up both
algorithms considerably. The run times discussed here do not include the
calculation of the simulated spike trains, but do include all initializations
involved in the metric calculation, and the calculation of the markage vec-
tor and the pre-calculated positive and negative exponential vectors, where
required.

The C++ code was compiled using g++ v4.6.1, part of the GNU compiler
collection. It was compiled with the directive -03 but with no further opti-
mizations and run on one core of an Intel Core i5-2520M CPU. In Fig. 1
the run times 7" are plotted against spike train length L. The largest L value
considered is L = 8.5s. Without further modification the pre-calculation of
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exponentials would be problematic for longer spike trains since exp (to/7)
will be too large to store as a double.

The graph in Fig. 1 shows both the recorded run times and a least squares
fit to a parabola, for the traditional algorithm, and to a line for the algorithm
with markage. For the algorithms with exponential pre-calculation shown in
the graphs the best-fit curves are

To(L) = 0.00738L* 4 0.00209L + 0.00145 (31)
for the traditional algorithm and
T1(L) = 0.00432L — 0.00011 (32)

for the algorithm with markage. Of course, the run times depend on platform,
hardware and implementation, but the ratio should give an approximate
indication of how well the algorithm performs

0.58
or, in terms of spike number, n,
17.4
T, ~ —T, (34)
n

for larger values of n. The factor 17.4 can be thought of as an overhead,
so for a collection of spike trains with an average of 174 spikes in each, the
speed up will be tenfold. The implication for the equation is that that the
new algorithm is worth using when there are more than 17.4 spikes, in fact,
for small values of n the quadratic is a poor fit and Ty = 0.00214 for L = 0.5s,
equivalent to n = 15, while 77(0.5) = 0.00329, so the traditional algorithm
is still considerably slower.

Exponential pre-calculation has a more substantial effect on the tradi-
tional algorithm than on the algorithm with markage; the traditional algo-
rithm requires many more exponential factors. Fitting curves to the run
times without exponential pre-calculation gives

To(L) = 0.219L% + 0.00496 L + 0.00135 (35)
for the traditional algorithm and

Ty(L) = 0.0185L — 0.000433 (36)
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for the markage algorithm, so

0.084
T, = 7

2.5

The ratio between the markage algorithm with exponential pre-calculation
and the traditional algorithm without is 0.6/n. Varying N, the number of
spike trains, verifies that the run times have an N? dependence.

If the same analysis is applied to the synapse metric with exponential
pre-calculation and with u = 0.5, we obtain

15.3
T~ —T,. (38)
n
The multi-neuron metric was also studied; using P = 10, N = 20 and cosf =

0.5 yielded
18.0

Ty ~ —T,. (39)
n
In Fig. 2 the running time for the multi-neuron metric is plotted against N
and P, the number of sets of spike trains and the number of spike trains in
each set. In each case, again considerably smaller run times are observed for
the algorithm with markage.

Discussion

The algorithms described here are more complicated to implement than the
more straight-forward approaches; however, for large spike trains the speed
up is considerable and may make practical an analysis technique that would
not otherwise be quick enough to be useful.

Although the method presented here is a computational trick, it is in-
teresting to note that a biologically inspired quantity, like the van Rossum
metric and its multi-neuron extension, might be expected to permit a trick
of this sort. The trick works by replacing a sum over history by a running
tally; this sort of replacement is typical of biological systems.

Matlab! and c++ 2 source codes for both the regular and the multi-neuron
van Rossum distances are available.

http://www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html
?http://sourceforge.net/p/spikemetrics
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Figure 2: Multi-neuron van Rossum metric: Run times plotted against N
and P. A shows run times plotted against the number of sets of spike trains,
N, for P = 10, B shows run times against the number of spike trains in each
set, P, for N = 10. In each case the run times were averaged over 200 trials
with the train length L = 3s, with angle cosf = 0.5 and with exponential
pre-calculation. The data points are shown, the lines interpolate between
these points. Since the dependence on both N and P is quadratic, the two
graphs are similar to the point of being almost indistinguishable.
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