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Abstract

With the increasing availability of multi-unit recordings the fo-
cus of attention is shifting from bivariate estimators of spike train
synchrony towards methods that describe patterns of activity across
many neurons. Such measures of population spike train synchrony are
becoming indispensable tools for addressing issues such as spike timing
reliability, network synchronization, and neuronal coding. This chap-
ter will give an overview of different approaches designed to quantify
multiple neuron synchrony. It will address both measures of synchrony
among one group of neurons as well as measures that estimate the de-
gree of synchronization between populations of neurons.

1 Introduction

A wide variety of approaches to quantifying the dissimilarity, or distance, be-
tween two spike trains has been suggested. Among these is the edit-distance
metric introduced in [21], which evaluates the total ‘cost’ needed to trans-
form one spike train into the other, using only certain elementary steps each
with an individual cost. Another metric proposed in [20] first maps the spike
trains to functions by convolving the spikes with an exponential function and
then measures the Euclidean distances between the functions. Both methods
involve one parameter that sets the time scale.

Recently, the ISI-distance [10, 11] and the SPIKE-distance [12, 14] have
been proposed as parameter free and time scale adaptive alternatives. These
new measures are complementary to the ones mentioned above; the van

1



Rossum metric and the ISI-distance quantifying dissimilarities in estimates
of the neurons’ local firing rate profiles whereas the Victor-Purpura metric
and the SPIKE-distance track differences in spike times. The ISI- and the
SPIKE-distance are defined using a time profile which means that they are
useful for time-local monitoring of dissimilarity.

Like the Victor-Purpura metric and the van Rossum metric, the ISI-
distance is known to be a metric [15]; however, we will refer to it as the ISI-
distance since that has been common practise until now. Generally though,
we will use ‘distance’ to mean a map from pairs of responses to a non-negative
real number that is proposed for measuring dissimilarity and reserve the
word ‘metric’ for distance measures that are metrics in the mathematical
sense; that is, symmetric, non-degenerate distance measures satisfying the
triangular inequality.

A distance measure is sensitive to the coding structure of spike trains
if it measures short distances between responses to the same stimulus and
longer distances between responses to different stimuli. Therefore, a distance
measure can be evaluated by performing distance-based clustering and then
calculating how accurately responses to the same stimulus are clustered to-
gether. In this chapter, the bivariate distance measures described above are
compared using this approach. For the van Rossum metric we also illustrate
a recently proposed trick that speeds up the computation considerably [7].

Advances in recording technology mean simultaneously recorded popula-
tions of neurons are increasingly common. In order to analyze these popula-
tion recordings, the spike train distance measures have to be extended from
the bivariate case to the population case. There are two sorts of population
measures.

The first type quantifies how spread-out the spike trains in a popula-
tion are. By summing pairwise bivariate distances the ISI- and the SPIKE-
distance can be used to measure the dissimilarity within a population re-
sponse: the time profile then gives a time-local indication of how the pop-
ulation is behaving, something that could be compared to the time course
of a stimulus for example. A new, entropy based, measure of population
dissimilarity is also examined.

The second type of population extension compares two different responses
from a population of neurons, typically this would mean two responses from
the same neurons corresponding to two different trials of a repeated sensory
input. However, these extensions could be applied to any pair of responses
composed of the same number of spike trains, for example, for comparing a
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real set of responses to a simulated response from a model of the network, or
for stereotypical neuronal networks like those found in insects, for responses
from the same neurons in different animals.

Population extensions of this second type have been suggested for the
Victor-Purpura [2] and the van Rossum metric [8]. They both introduce
a second parameter that quantifies the importance of distinguishing spikes
fired in different cells by interpolating between the two extremes of single
neuron (labeled line, LL) and summed population (SP ) coding. Here, these
extensions are reviewed. For this kind of extension the above-mentioned trick
for the van Rossum extension [7] is even more effective.

2 Measures of spike train distance

2.1 Notation

In the bivariate case we have two spike trains x and y. We represent their
spikes as txi and tyj with i = 1, . . . ,Mx and j = 1, . . . ,My so Mx and My

denote the numbers of spikes in x and y, respectively. It is assumed the
spikes are sorted in ascending order, so txi ≤ txi+1 and tyi ≤ tyi+1.

In the population case, we have two populations X and Y with n =
1, . . . , N spike trains each. Spikes are represented as txni and tynj with i =
1, . . . ,Mxn and j = 1, . . . ,Myn ; Mxn and Myn denote the numbers of spikes
in xn and yn, the nth spike train of population X and Y , respectively. Each
population can also be represented by the pooled spike train which we denote
as tXi and tYj with i = 1, . . . ,MX and j = 1, . . . ,MY as well as MX =

∑
nMxn

and MY =
∑
nMyn .

2.2 The Victor-Purpura metric

The metric DV introduced in [21] defines the distance between two spike
trains in terms of the minimum cost of transforming one spike train into the
other using three basic operations: spike insertion, spike deletion and spike
movement. Each is given a cost; one for inserting or deleting a spike and
cV |δt| for moving a spike a temporal distance δt. The cost-per-time cV sets
a time scale for the analysis.

In the minimum cost edit, a spike is never moved more than 2/cV since
the cost of doing that would be greater than deleting one of the spikes and
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inserting another to match the spike in the other train. This means that
for high cV , the distance approaches the number of non-coincident spikes. In
contrast, for small cV , the distance approaches the difference in spike number
because it is cheap to move spikes around and so most of the cost comes from
adding spikes to the smaller spike train so that it matches the longer. Thus,
by decreasing the cost, the Victor-Purpura metric is transformed from a
timing distance to a rate distance.

This is a metric since it satisfies the three properties a distance must
have to be a metric: symmetry, non-degeneracy and the triangular inequality.
Although it is easiest to talk about transforming one spike train to match
other, it makes no cost difference which spike train is being transformed and
the distance is symmetric in the spike train order. Since each of the edit costs
is positive, it is easy to see that the distance is only zero for two identical spike
trains, this is non-degeneracy. The third condition, the triangular inequality,
states that the distance between two spike trains is never greater than the
distance taken via a third spike train; this follows from the definition of the
distance as the minimum cost.

Although the Victor-Purpura metric is defined as a minimum cost, the
calculation of the distance does not require a minimization: it can be cal-
culated iteratively [21, 19]. This involves completing a Mx × My grid of
distances between truncated spike trains; essentially the algorithm works by
adding successive spikes at the ends of the spike trains.

2.3 The van Rossum metric

To describe the van Rossum metric [20] it is useful to first define a map from
spike trains to functions: the spike train x = {tx1 , tx2 , . . . , txMx

} is mapped to
f(t;x) by filtering it with a kernel h(t):

x 7→ f(t;x) =
Mx∑
i=1

h(t− txi ). (1)

The kernel function has to be specified. In the original paper the causal
exponential is used

h(t) =

{
0 t < 0
e−t/τ t ≥ 0

(2)

where the decay constant τ is the time scale which parameterizes the metric.
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The van Rossum metric is induced on the space of spike trains by the L2

metric on the space of functions. In other words, the distance between the
two spike trains x and y is given by

DR =

√
2

τ

∫ ∞
0

dt[f(t;x)− f(t; y)]2 (3)

where the normalizing factor of 2/τ is included so that there is a distance
of one between a spike train with a single spike and one with no spikes.
The metric properties of the van Rossum metric follow from those of the L2

metric; it is symmetric in x and y, zero only when f(x, t) = f(y, t) for all t,
which, in turn, implies x = y and

[f(t;x)− f(t; y)]2 = [f(t;x)− f(t; z) + f(t; z)− f(t; y)]2

≤ [f(t;x)− f(t; z)]2 + [f(t; z)− f(t; y)]2 (4)

for all t, establishing the triangular inequality.
For the causal exponential filter, the integral in the formula for DR, Eq. 3,

can be done explicitly to give a distance [18, 17]

D2
R =

∑
i,j

e−|t
x
i −t

x
j |/τ +

∑
i,j

e−|t
y
i−t

y
j |/τ − 2

∑
i,j

e−|t
x
i −t

y
j |/τ . (5)

Recently, in [7], a trick has been presented which reduces the computational
cost for the regular van Rossum metric between two spike trains of similar
length, Mx ∼ My, to order M = (Mx + My)/2 from order M2. The idea
behind this trick is to imitate how things are calculated in biological systems
where, for example, in developmental biology global order is established by
local responses to chemical gradients; in our case this means replacing the
numerous pairwise calculations with a running tally. Specifically, a new vec-
tor, referred to as a markage vector in [7], is defined: given the spike train x,
the markage vector will have the same number, Mx, of element as there are
spikes and the entries are defined recursively so that mx

1 = 0 and

mx
i = (mx

i−1 + 1)e−(t
x
i −t

x
i−1)/τ . (6)

This means
mx
i =

∑
j|i>j

e−(t
x
i −t

x
j )/τ (7)
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where we recall that the spikes are in ascending order, so the exponent is
negative. This quantity is equal to the left limit of f(t, x) at txi , the value it
would have at t = txi but for there being a spike there.

The markage vector is used to reduce the double sums in the expression
for DR(x, y), Eq. 5, to single sums. For convenience this equation is first
rewritten to avoid the use of the absolute value

D2
R =

Mx +My

2
+

∑
i

∑
j|i>j

e−(t
x
i −t

x
j )/τ +

∑
i

∑
j|i>j

e−(t
y
i−t

y
j )/τ

−
∑
i

∑
j|txi >t

y
j

e−(t
x
i −t

y
j )/τ −

∑
i

∑
j|tyi>t

x
j

e−(t
y
i−t

x
j )/τ , (8)

where j|txi > tyj indicates that the sum is restricted to values of j where
tyj < txi . This yields ∑

i

∑
j|i>j

e−(t
x
i −t

y
j )/τ =

∑
i

mx
i . (9)

The cross-like terms are trickier, let tyP(txi ) denote the last spike time in y
that is earlier than txi , hence

tyP(txi ) = maxj (tyj |txi > tyj ), (10)

which leads to∑
i

∑
j|txi >t

y
j

e−(t
x
i −t

y
j )/τ =

∑
i

e−(t
x
i −t

y
P(t

x
i ))/τ

∑
j|tyP(t

x
i )≥t

y
j

e−(t
y
P(t

x
i )−t

y
j )/τ

=
∑
i

e−(t
x
i −t

y
P(t

x
i ))/τ

1 +
∑

j|tyP(t
x
i )>t

y
j

e−(t
y
P(t

x
i )−t

y
j )/τ


=

∑
i

e−[t
x
i −t

y
P(t

x
i )]/τ [1 +my

P (txi )] . (11)

where my
P(txi ) is the value of the y markage vector corresponding to tyP(txi ),

in other words, if j is the index of tyP(txi ), so tyj = tyP(txi ), then my
P(txi ) = my

j .
Since the other two terms in the expression for DR are identical to the two
above with x and y switched they can be calculated in the same way, so, for
example, ∑

i

∑
j|tyi>t

x
j

e−(t
y
i−t

x
j )/τ =

∑
i

e−[t
y
i−t

x
P(t

y
i )]/τ [1 +mx

P(tyi )] (12)
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This trick reduces the calculation of all four terms from M2 to M , how-
ever, using the markage vector does introduce extra calculations. Along with
the calculation of the markage vector itself, there is the need to calculate
tyP(txi ), this can be calculated iteratively by advancing it from its previous
value when necessary. It is demonstrated in [7] that the constant prefactor
to M in the algorithm with markage is larger than the prefactor to M2 in the
traditional algorithm, but that it is worthwhile using the markage algorithm
even for quite short spike trains.

2.4 The ISI- and the SPIKE-distance

For the van Rossum metric each spike train is initially transformed into a
continuous function. Both the ISI- and the SPIKE-distance build on a similar
first step, however, here the discrete spike times of a pair of spike trains are
immediately transformed into a time profile, that is, a temporal sequence of
instantaneous dissimilarity values. The overall distance is then the average of
the respective time profile, so, for example, for the bivariate SPIKE-distance,

DS =
1

T

∫ T

t=0
S(t)dt (13)

where T denotes the overall length of the spike trains which would often be
the duration of the recording in an experiment. In the following this equation
is always omitted, and the discussion is restricted to showing how to derive
the respective time profiles. In fact, the time profile are an important aspect
of these distances since they allow for a time-local description of spike-train
dissimilarity.

Both time profiles rely on three piecewise constant quantities (Fig. 1)
which are assigned to each time instant between zero and T . For the spike
train x these are the time of the preceding spikes

txP(t) = max
i

(txi |txi ≤ t), (14)

the time of the following spikes

txF(t) = min
i

(txi |txi > t), (15)

as well as the instantaneous interspike interval

λxI (t) = txF(t)− txP(t). (16)
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The ambiguity regarding the definition of the very first and the very last
interspike interval is resolved by adding an auxiliary leading spikes at time
t = 0 and auxiliary trailing spikes at time t = T to each spike train.

2.4.1 The ISI-distance

The time profile of the ISI-distance [10] is calculated as the instantaneous
ratio between the interspike intervals λxI and λyI (Eq. 16) according to:

I(t) = Λ(1/λxI (t), 1/λyI (t)) (17)

where

Λ(r1, r2) =

{
r2/r1 − 1 if r2 ≤ r1
1− r1/r2 otherwise.

(18)

This ISI-ratio equals zero for identical ISI in the two spike trains, and
approaches −1 and 1, respectively, if the first or the second spike train is
much faster than the other. For the ISI-distance the temporal averaging in
Eq. 13 is performed on the absolute value of the ISI-ratio and, therefore,
treats both kinds of deviations equally.

The ISI-distance is a metric. Symmetry follows directly from the defi-
nition and the triangular inequality has been demonstrated in [15]. In fact,
they show the integrand |I(t)| satisfies the triangular inequality for each value
of t. Without loss of generality take rx ≤ ry so

|Λ(rx, ry)| = 1− rx

ry
(19)

and consider rz, the rate at t for any other spike train z. If rz ≤ rx then

0 ≤ (rx − rz)(rx + ry) = (rx)2 + rxry − rzry − rzrx. (20)

Bringing the (rx)2 term to the left and dividing by rxry this gives

|Λ(rx, ry)| = 1− rx

ry
≤ 1− rz

rx
+ 1− rz

ry
= |Λ(rx, rz)|+ |Λ(rz, ry)|. (21)

The other two cases, rx ≤ rz ≤ ry and rx ≤ ry ≤ rz follow in the same way
using, respectively,

0 ≤ (rz − rx)(ry − rz)
0 ≤ (rz − ry)(rx + ry). (22)
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Figure 1: Illustration of the local quantities needed to define the time profiles
of the two time-resolved distances for an arbitrary time instant t: A. ISI-
distance. B. SPIKE-distance.
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Non-degeneracy also holds, but in a subtle way. I(t) is only zero if rx(t) =
ry(t). As described in [15], if x and y are periodic spike trains with the
same, constant, firing rate they could differ in phase, but still have I(t) = 0.
However, in the definition of the ISI-distance given here, with auxiliary spikes
added at the beginning and end of the spike train, for a positive phase the
boundary condition will break the periodicity for at least one of the spike
trains and lift this degeneracy.

2.4.2 The SPIKE-distance

The ISI-distance relies on the relative length of simultaneous interspike inter-
vals and is thus well-designed to quantify similarities in the neurons’ firing-
rate profiles. However, it is not ideally suited to track synchrony that is
mediated by spike timing. The interspike interval is often larger than the
changes in relative spike times between spikes in the two spikes trains and so
a time profile which is based only on interspike intervals is often not useful
for tracking changes in synchrony.

This kind of sensitivity can be very relevant since coincident spiking is
found in many different neuronal circuits. It is important here, since a time
profile graph is most likely to be useful if it plots instantaneous changes in
synchrony. This issue is addressed by the SPIKE-distance which combines
the properties of the ISI-distance with a specific focus on spike timing; see
Kreuz et al. [12] for the original implementation and Kreuz et al. [14] for the
improved version presented here.

The time profile of the SPIKE-distance relies on differences between the
spike times in the two spike trains. It is calculated in two steps: First for each
spike the distance to the nearest spike in the other spike train is calculated,
then for each time instant the relevant spike time differences are selected,
weighted, and normalized. Here ‘relevant’ means local; each time instant is
uniquely surrounded by four corner spikes : the preceding spike of the first
spike train txP, the following spike of the first spike train txF, the preceding
spike of the second spike train tyP, and, finally, the following spike of the
second spike train tyF. To each of these corner spikes can be identified with
a spike time difference, for example, for the previous spike of the first spike
train

∆txP = min
i

(|txP − tyi |). (23)

and analogously for txF, tyP, and tyF.
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For each spike train separately a locally weighted average is employed
such that the differences for the closer spike dominate; the weighting factors
depend on

λnP(t) = t− tnP(t) (24)

and
λnF(t) = tnF(t)− t, (25)

the intervals to the previous and the following spikes for each neuron n = x, y.
The local weighting for the spike time differences of the first spike train reads

Sx(t) =
∆txPλ

x
F + ∆txFλ

x
P

λxI

and analogously Sy(t) is obtained for the second spike train. Averaging over
the two spike train contributions and normalizing by the mean interspike
interval yields the SPIKE-distance

S(t) =
Sx(t) + Sy(t)

2〈λnI 〉n
. (26)

It seems likely that the SPIKE-distance is also a metric, although this
has not yet been proved. It is certainly symmetric and non-degenerate. As
for the triangular inequality, while it does not hold for all t, it might hold
after the time profile has been integrated.

2.5 Entropy-based measure

Another formulation of a distance between spike trains is provided by the
entropy. This does not lead to a metric but it is interesting to consider be-
cause it can be used to quantify the dissimilarity of the estimated firing rates
for the different spike trains regardless of how the firing rates are estimated
and because it has a natural generalization to populations.

If rx(t) and ry(t) are the estimated rates for the two spike trains, estimated
either using the ISI or by filtering; then the conditional probability of a spike
at time t in spike train n = x or y, conditioned on there being a spike in one
of the two spike trains, is

pn(t) =
rn(t)

rx(t) + ry(t)
. (27)
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The entropy for this conditional probability reads

H2(p
x(t), py(t)) = −px(t) log2 p

x(t)− py(t) log py(t). (28)

If the two rates are very different this is close to zero, if they are very similar,
it is close to one; as such a distance measure given by

IH(t) = 1−H2(p
x(t), py(t)). (29)

measures the distance between the two trains.

3 Comparisons

3.1 The ISI- and the SPIKE-distance

The ISI-distance is based on interspike intervals and quantifies covariations in
the local firing rate, while the SPIKE-distance tracks synchrony mediated by
spike timing (Fig. 2). Note that this does not mean that the ISI-distance is
sensitive to rate coding and the SPIKE-distance sensitive to temporal coding.
It is the relative timing of interspike intervals and spikes, respectively, that
matters.

3.2 The ISI-distance and the van Rossum metric

Although, as described in Appendix A of [11], there are subtleties in relating
the firing rate to the expected inter-spike interval, 1/λx(t) and 1/λy(t) are,
roughly speaking, instantaneous estimates of the firing rate at t; in fact it
resembles a k-th nearest neighbor estimate with k = 2. In this way, the
ISI-distance resembles the van Rossum metric and it is possible to mix-and-
match: the 1/λx(t) and 1/λy(t) in the formula for I(t) could be replaced by
the filtered functions f(t;x) and f(t; y) used in the van Rossum metric and
vice versa.

The functional form of I(t) used in the ISI-distance is chosen in order to
give a good representation of how the difference between the two spike trains
evolves with t. The analogous functional form for the van Rossum metric is

R(t) = [rx(t)− ry(t)]2 (30)

where rx(t) and ry(t) are estimates of the firing rate. The ISI-function is
invariant under a rescaling of the two firing rates by the same factor, the van
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Rossum function is not, but it does link the metric to an L2 structure, which
may prove useful in some mathematical applications.

3.3 The SPIKE-distance and the Victor-Purpura met-
ric

Like the Victor-Purpura metric, the SPIKE-distance depends on gaps be-
tween spikes. However, the Victor-Purpura metric pairs up spikes whereas
for the SPIKE-distance more than one spike in one spike train can be matched
to a given spike in the other. Another difference is that the Victor-Purpura
metric has a cut-off, spikes are not paired if they are more than 2/cV apart; in
the SPIKE-distance the gap between an isolated pair of spikes can contribute
to S(t) even if they are a large distance apart.

Of course, this could be changed by replacing the ∆ts with saturating
functions, however, this would introduce a scale into the SPIKE-distance.
Moreover, the definition of S(t) does have the interspike interval in the de-
nominator, limiting the effect large gaps have on the distance. These differ-
ences are illustrated in Fig. 3.

3.4 Comparison of all distances on birdsong data

A common approach to evaluating how well a spike-train distance measure
succeeds is to test it using clustering [21]. If a set of spike trains is made up
of multiple responses to a set of different stimuli then they can be clustered
so each cluster consists of different responses to a single stimulus. The dis-
tance measure is evaluated by quantifying how well it succeeds in measuring
small distances between spike trains in the same cluster and longer distances
between spike trains in different clusters.

One measure of clustering performance is the normalized transmitted
information h̃ [21]. This is calculated from a confusion matrix, a ns × ns
matrix, where ns is the number of stimuli. Starting with a matrix of zeros,
one of the responses is chosen and the rest are clustered according to stimulus.
If the chosen response is a response to stimulus i and is closest to the cluster
j, one is added to the ijth entry, Nij. This is repeated with each of the
responses used as the chosen response, so that at the end the entries in the
confusion matrix add up to give the total number of responses.

A good distance function should measure shorter distances between a
response and its own cluster, leading to more diagonal elements in the con-

14



A

spike train x

tx1 tx2 tx3 tx4

×1qδt1 qδt2×1

spike train y
ty1 ty2 ty3

×1

B

spike train x

tx1 tx2 tx3 tx4

gx1 = gy1 gx3 = gy2gx2

spike train y
ty1 ty2 ty3

gx4 = gy3

Figure 3: The difference between how the Victor-Purpura metric and SPIKE-
distance pair spikes. In A the Victor-Purpura metric pairs the spikes in such
a way as to produce the lowest cost edit, this means tx2 , tx4 are deleted and ty3
added, the others are paired. In B the gaps are given by the nearest spike in
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fusion matrix. The normalized transmitted information quantifies this, for
equally likely stimuli, it is given by

h̃ =
1∑
ij Nij

∑
ij

Nij

logns
Nij − logns

∑
k

Nkj − logns

∑
k

Nik + logns

∑
ij

Nij

 .
(31)

where logns
Nij, for example, is the logarithm to the base ns of Nij, so,

logns
Nij = lnNij/ lnns. Roughly, this measures how well clustering by dis-

tance transmits information about the stimulus-based clustering. A low value
corresponds to low transmitted information and, therefore, a poor metric.
Values close to one, the maximum, indicate that the metric performs well.
One complication to this procedure is that a weighted average of the dis-
tances is often used to reduce the effect of outliers, this was described in [21]
and is reviewed in [9].

This approach is used to evaluate the different distance measures consid-
ered here. The example test data used is a set of spiking responses recorded
from the primary auditory neurons of zebra finch during repeated playback
of songs from a standard repertoire. These electrophysiological data were
original described in [16, 23] and these paper should be consulted for a de-
tailed description of the experimental and primary data processing proce-
dures. They are used as an example data set for evaluating metrics in [6, 9].
At each of the 24 sites ten responses to each of 20 zebra finch songs were
recorded. The result of this test is shown in Fig. 4. It demonstrates a roughly
comparable performance of the different measures. Although the van Rossum
metric performs slightly better, the convenient ISI-distance does not come
far behind, see (Fig. 4. The combination of entropy and the ISI rate estimate
performs well, possibly reflecting the ability of k-th nearest neighbor meth-
ods to accurately estimate conditional probabilities. Finally, on this data set
the SPIKE-distance performs better than the Victor-Purpura metric.

4 Measuring the dissimilarity within a pop-

ulation

For all spike train distances there exists a straightforward extension to the
case of more than two spike trains, the averaged bivariate distance. How-
ever, for the ISI- and the SPIKE-distance this average over all pairs of neu-
rons commutes with the average over time, so in order to achieve the same
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Figure 4: Comparing the various distance measures. In this figure the h̃
value has been plotted for each of the 24 sites in the zebra finch data. Each
horizontal line corresponds to the performance of a single metric, the line
runs from zero to one, as a visual aid a tiny gap is left at 0.25, 0.5 and
0.75. Along each line a small stroke corresponds to a single site, the long
stroke corresponds to the average value. In three graphs marked ‘ISI’ ISI
use the estimate the rate, the next three, marked ‘filter’ use the filter, with
τ = 12.5ms. For the two graphs marked I(t) the function is Λ(r1, r2) (Eq. 18),
for the graphs marked IH , the entropy-based function is used (Eq. 29) and
for the graphs marked DH the L2 function (Eq. 30) is used. Finally, in the
section marked ‘synchrony’, S gives the SPIKE-distance and DR the Victor-
Purpura metric with cV = 71s−1. The values of τ and cV have been chosen
to give a good overall performance, obviously choosing a different τ or cV for
each site would improve performances, but would give a poorer comparison
for the parameter-free methods.
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kind of time-resolved visualization as in the bivariate case it is convenient to
first calculate the instantaneous average, for example, Sa(t) over all pairwise
instantaneous values Smn(t),

Sa(t) =
1

N(N − 1)/2

N−1∑
n=1

N∑
m=n+1

Smn(t) (32)

and then calculate the distance by averaging the resulting time profile using
Eq. 13. All time profiles and thus all distances are bounded in the interval
[0, 1]. The distance value zero is obtained for identical spike trains only.

An exemplary application of both distances to artificially generated mul-
tivariate data can be found in Fig. 5.

The entropy based measure (see Section 2.5) can be extended in a nat-
ural way to measure the similarity of a collection of spike trains. For the
population X

IH(t) = 1−HMx(px1(t), . . . , pxMx (t)) (33)

where HMx(px1(t), . . . , pxMx (t)) = H2(p
x1(t), . . . , pxMx (t))/ log2 (Mx) and

pxi(t) =
rxi(t)∑
j r

xj(t)
(34)

5 Measuring the dissimilarity between pop-

ulations

5.1 The population extension of the Victor-Purpura
metric

A population extension of the Victor-Purpura-Distance has been proposed
[2] which can be used to uncover if and how populations of neurons cooper-
ate to encode a sensory input. This extension adds one further edit type to
the existing three allowed edits: a spike can be relabeled from one neuron
to another at a cost of k. Thus, for simultaneous recordings from proximate
neurons, spikes are labeled by the neuron that fired them, but this label can
be changed at a cost of k, where k is a second parameter. Hence, the pop-
ulation distance Dp

V between two sets of labeled spike trains is the cheapest
set of elementary moves transforming one set into the other, where, now, the
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Figure 5: Comparing the population distance measures. In the first half
within the noisy background there are four regularly spaced spiking events
with increasing jitter. The second half consists of ten spiking events with
decreasing jitter but now without any background noise. Both Ia and Sa

distinguish between the noisy and noiseless period and chart the decline
in jitter in the noiseless period. Ia has peeks for the spiking event with
noise, since the noise causes wide fluctuations in the interspike intervals. In
contrast, Sa has troughs, since the spiking events give local synchrony.
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elementary moves are adding or deleting a spike at a cost of one, moving a
spike by an interval δt at a cost of q|δt| and relabeling a spike at a cost of k.

In [2] two different coding strategies for neuron populations are distin-
guished: a ‘summed population code’ (SP ) metric where the two spike trains
from the two neurons are super-imposed before the distance is calculated, and
a ‘labeled line code’ (LL) metric where the distance is measured for each
neuron separately and then added. These two possibilities correspond to the
metrics at either end of the one-parameter family of Dp

V metrics obtained by
varying k.

This dimensionless parameter quantifies the importance of distinguishing
spikes fired by different neurons. When k = 0, there is no cost for reassigning
a spike’s label, and the entire population discharge is viewed as a sequence
of spikes fired by a single-unit, corresponding to a SP metric. When k ≥ 2,
spikes fired by different neurons are never considered similar, since deleting
two spikes with different labels, for a cost of two, is not more expensive
than changing their labels to match. For values of k in [0, 2], spikes fired by
different neurons δt apart can be matched in a transformation if the cost of
this transformation step, cV |δt| + k, is less than two. Thus, for these values
of k, spikes fired by different neurons can be considered similar if they occur
within (2 − k)/cV of each other. For k ≥ 2 the population distance Dp

V

between the two sets of spike trains is the same as the sum of the individual
Victor-Purpura metrics. Therefore, this is a LL metric.

Details of algorithms for calculating this distance can be found in [1] and
[22].

5.2 The population extension of the van Rossum met-
ric

Also the van Rossum metric has been extended to the population case [8]
allowing a spike train distance to be measured between the two populations
X and Y . This works by mapping the N spike trains of the two population
responses to a vector of functions using a different direction in the vector
space for each neuron. The interpolation between the labeled line (LL)
coding and the summed population (SP ) coding, is given by varying the
angle θ between these directions from zero (SP ) to π/2 (LL) or, equivalently,
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the parameter c = cos θ from one to zero:

DR =

√√√√√2

τ

∑
n

∫ ∞
0
|δn|2dt+ c

∑
m6=n

∫ ∞
0

δmδndt

 (35)

with δn = f(t, xn)− f(t, yn).
Here, computational expense is an even greater difficulty but the same

markage algorithm as in Section 2.3 can be used [7]. First, similar to the bi-
variate case above, the population van Rossum distance can also be estimated
in a more efficient way by integrating analytically:

DR =

√√√√√∑
n

Rn + c
∑
m 6=n

Rnm

 (36)

with

Rn =
∑
i,j

e−|t
xn
i −t

xn
j |/τ +

∑
i,j

e−|t
yn
i −y

yn
j |/τ − 2

∑
i,j

e−|t
xn
i −t

yn
j |/τ (37)

being the bivariate single neuron distance, as in Eq. 5, between the p-th
spike trains of u and v and

Rnm =
∑
i,j

e−|t
xn
i −t

xm
j |/τ +

∑
i,j

e−|t
yn
i −t

ym
j |/τ

−
∑
i,j

e−|t
xn
i −t

ym
j |/τ −

∑
i,j

e−|t
yn
i −t

xn
j |/τ (38)

representing the cross-neuron terms that are needed to fully capture the
activity of the pooled population. As in the estimate in Eq. 35 the variable
c interpolates between the labeled line and the summed population distance.

These are the two equations for which the markage trick can be applied
since all of these sums of exponentials can be rewritten using markage vectors
in the same way as it was done in Eqs. 8, 9, and 11.

6 Discussion

In this chapter we have reviewed measures of spike train dissimilarity; we
have described four different distance measures, the Victor-Purpura and the
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van Rossum metric as well as the ISI- and the SPIKE-distance and we have
indicated some of the ways they differ and some of the ways they resem-
ble each other. While these spike train distances are applied to quantify
the dissimilarity between just two individual spike trains, electrophysiologi-
cal population data is becoming increasingly important and the spike trains
distance measures are being extended so that they can be applied to popu-
lations. We review the progress that has been made on this problem. There
are two kinds of population extensions aimed at measuring the dissimilarity
either within one population of spike trains or between two populations of
spike trains.

The measures for quantifying the dissimilarity of pairs of spike trains can
be grouped in different ways. One basic division groups the ISI-distance and
van Rossum metric together; in each of these two cases a time function is
associated with each of the two spike trains and these functions are compared
to give the distance measure. A third member of this group, based on entropy,
is suggested. In the other group, the SPIKE-distance and Victor-Purpura
metric compare spikes in the two spike trains directly and in each case the
dissimilarity measure is based on the local differences in individual spike
times. However, the two distance measures do differ in how they describe
these local timing differences, the Victor-Purpura metric is an edit distance
metric whereas the SPIKE-distance quantifies dyssynchrony.

The distance measures can also be grouped according to whether they
require a time scale parameter or not. The Victor-Purpura metric and the
van Rossum metric both depend on a time scale parameter whereas the ISI-
and the SPIKE-distance do not. Often, in applying distance measures to
experimental situations, the need to specify a time scale is awkward since it
is unclear how it should be calculated, particularly in situations like maze
exploration by rats where, without identical trials, it is difficult to optimize
the metric by calculating the transmitted information. This certainly makes
the ISI- and the SPIKE- distance more convenient.

Of course, the time scale parameter in the Victor Purpura and the van
Rossum metric may allow them to probe aspect of the spike train structure
that are invisible to the ISI- and the SPIKE-distance. Here, the performance
of the metrics is evaluated using clustering and this does not show any strong
difference in performance across the four distance measures and so fails to
demonstrate an advantage of the distance measure with a parameter. It
should be noted though that the evaluation only uses one data set and,
hopefully, as these distance measures are applied to other data sets it will
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become clearer how the properties of the different measures are related to
properties of spike trains.

For example, a prominent assumption is that the optimal values of the
time scale parameter in the Victor-Purpura and the van Rossum metric might
be related to temporal properties of coding in the spike trains [21]. However,
how this can be described precisely is unclear. In fact, in Chicharro et al. [3]
and Chicharro et al. [4] the optimal value of the time scale parameter was
studied for transient constant and time-varying stimuli and it was shown that
the optimal time scale obtained from a spike train discrimination analysis
is far from being conclusive. Rather it results in a non-trivial way from the
interplay of many different factors such as the distribution of the information
contained in different parts of the response or the degree of redundancy
between them.

The time scale parameter in the Victor-Purpura metric and the van
Rossum metric does allow them to test for neuronal codes ranging from a
rate code to a coincidence detector. It might turn out that in some neuronal
systems the type of neuronal coding means the data favors one spike train
analysis tool over another and, if a particular coding scheme is assumed, spe-
cific measures are needed for a confirmatory analysis, otherwise more general
measures are very well suited for an exploratory analysis [12].

The population codes are not yet fully developed, for example, no dis-
tance measures are given here for using the ISI- and the SPIKE-distance to
compare population responses. It is likely that multi-neuron distance mea-
sures generalizing the ISI- and the SPIKE-distance could be defined using
the population Victor-Purpura and van Rossum metrics as guides.

As with the time scale parameter, the population Victor-Purpura and
van Rossum metrics have a parameter which interpolates between coding
schemes, in this case between the summed population code and the labeled
line code. It would also be interesting to understand this parameter in a
more principled way and to extend the parametrization to other popula-
tion coding schemes. More importantly, although early applications of the
population metrics have been promising, with, for example, an interesting
investigation of population auditory coding in grasshoppers using the popu-
lation van Rossum metric [5], there have not been a substantial number of
investigations using these methods. That, however, seems likely to change
in the future.

We close by noting that links to source codes (mostly Matlab but also
some C++ and Python) for all methods dealt with in this chapter can be
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found under http://www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html.
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[17] Paiva ARC, Park I, Pŕıncipe JC. 2009. A reproducing kernel Hilbert
space framework for spike train signal processing. Neural Computation
21:424–449.

[18] Schrauwen B, Van Campenhout J. 2007 Linking non-binned spike train
kernels to several existing spike train metrics. Neurocomputing 70:1247–
1253.

[19] Sellers, PH. 1974 On the theory and computation of evolutionary dis-
tances. SIAM Journal on Applied Mathematics 26:787–793.

25



[20] van Rossum MCW. A novel spike distance. Neural Comput, 2001;13:751-
63.

[21] Victor JD, Purpura KP. Nature and precision of temporal coding in
visual cortex: A metric-space analysis. J Neurophysiol, 1996;76:1310-
26.

[22] Victor JD, Purpura KP, Gardner D. Dynamic programming algorithms
for comparing multineuronal spike trains via cost-based metrics and
alignments. J Neurosci Methods, 2007;161:351-60.

[23] Wang L, Narayan R, Graña G, Shamir M, Sen K (2007) Cortical discrim-
ination of complex natural stimuli: Can single neurons match behavior?
J Neurosci 27(3):582–589.

26


