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Synonyms

Spike metric

Definition

A “spike train distance” is a means for comparing
two sequences of stereotyped events. The term
“spike metric” refers to a spike train distance
that, additionally, has the formal mathematical
properties of a metric. Spike train distances have
broad application in neuroscience, since the action
potentials emitted by a neuron or set of neurons
can be regarded as a sequence of stereotyped
events; we briefly survey these applications here.

Detailed Description

Spike train distances are rules for assigning a
notion of distance, or dissimilarity, to pairs of
event sequences. In contrast to most quantitative
approaches to the analysis of scientific data, the
framework of spike train distances does not make
the implicit assumption that the objects of interest
(i.e., the event sequences) can be thought of as
vectors. In many cases, including the earliest
examples of spike train distances (van Rossum
2001; Victor and Purpura 1996, 1997), these dis-
tances also satisfy the formal mathematical
requirements to be a “metric” (see below). In
this case, the event sequences may be considered
elements in a “metric space.” A metric space is a
topological space that is more general than a vec-
tor space. A metric space must have a notion of
distance, but it need not have coordinates, nor
allow for addition, scalar multiplication, or the
measurement of angles.

Two considerations give this general frame-
work a special flavor when applied to neural
data. The first consideration is mathematical: for
event sequences, it is natural to think of the topol-
ogy as combining a discrete component with a
continuous component. The discrete component
is that the number of events in a spike train must
be an integer; the continuous component is that
each of these events can occur across a continuum
of times. The second consideration is biological:
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much is known about the physiology of neurons
and neural circuits, and spike train distances are
typically designed with the goal of capturing the
biologically significant aspects of neuronal
activity.

As detailed below, two contrasting ideas
concerning the biological meaning of a spike
train serve as anchor points: (a) the firing events
in a spike train might serve primarily as a means to
represent an underlying firing rate vs. (b) the times
of these firing events might have individual sig-
nificance, enabling neural computations to be
based on coincident firing events across neurons
and other aspects of fine temporal structure.

Notation

A spike train – the sequence of action potentials
emitted by one or more neurons – is formalized as
a sequence of stereotyped events, called spikes,
that occur during a fixed observation period
[0, T]. That is, a spike train A is represented by
an ascending sequence of real numbers
tA1 , . . . , t

A
M Að Þ in [0, T], where tAj (or simply tj) is

the time of occurrence of the jth spike andM(A) is
the total number of spikes (which may be 0).

The above applies to a setting in which all
spikes originate from a single neuron or in which
the identity of the neurons that generate the indi-
vidual spikes is not distinguished. It is readily
extended to a setting in which the neural activity
arises from R different neurons, and the neuron of
origin of each event is known: the sequence of
times t1, . . ., tM(A) is associated with a sequence of
labels a1, . . ., aM(A), each drawn from a set of tags
{1, . . ., R}. Thus, spike trains are regarded as a
sample drawn from a point process (activity of
one neuron) or a labeled point process (activity
of several neurons).

Formal Definition

A spike train distance is a mapping D from the set
of spike trains to the nonnegative real numbers

that meets the three requirements of a topological
metric:

Non� negativity : D A,Bð Þ � 0 and

D A,Bð Þ ¼ 0 only if A ¼ B ð1Þ

Symmetry : D A,Bð Þ ¼ D B,Að Þ ð2Þ

Triangle inequality : D A,Cð Þ
� D A,Bð Þ þ D B,Cð Þ ð3Þ

The symmetry property (Eq. 2) and the triangle
inequality (Eq. 3) are critical to give the metric the
properties that one expects from a distance based
on paths between points. Specifically, the symme-
try property means that the shortest path between
two points does not depend on the direction of
travel, and the triangle inequality means that the
shortest path between two points (A and C) cannot
be any longer than a path that is constrained to
stop at a particular intermediate point B. However,
the nonnegativity property (Eq. 1) is less crucial
and is frequently relaxed to omit the “only if”
clause – in which case, D is formally a pseudo-
metric. In this case, the space of spike trains can
be partitioned into equivalence classes of spike
trains that are at distances of zero from each other,
and D acts as a metric on these equivalence clas-
ses. The “spike count distance,” formalized fol-
lowing Eq. (11), is a simple example of a
pseudometric; spike trains with the same number
of spikes fall into an equivalence class.

Constructing Spike Train Distances

Spike train distances can be organized into several
families. The most straightforward family is based
on embedding: spike train distances are defined by
mapping the spike trains into a vector space and
then adopting the vector space distance. Since the
vector space distance is a metric, the resulting spike
train distance is also guaranteed to be a metric.

However, spike train distances need not be
derived from distances in vector spaces. In cost-
based distances, a set of simple transformations of
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spike trains is specified, along with their
(nonnegative) costs. The spike train distance is
then defined as the minimal total cost of trans-
forming one spike train into another. Because the
distance is defined in terms of a minimum cost
path of transformations, these distances are
guaranteed to be metrics. Other families of dis-
tances include time-resolved and timescale-
independent spike train distances, described
below. These constructs, while intuitively dis-
tances, do not meet the formal requirements of a
metric.

Spike Train Distances Based on Embedding
In the embedding construction, spike trains are
first mapped into a normed vector space V via a
mapping f. Since the vector space norm kuk pro-
vides a metric on vectors via D(u, v) = ku � vk,
mapping spike trains into vectors yields a metric
on the spike trains:

D A,Bð Þ ¼ f Að Þ � f Bð Þk k ð4Þ

The nature of the mapping f from the space of
spike trains to the vector space is critical. Typi-
cally, this mapping respects an additive structure
on the spike trains: that is, if A + B denotes the
spike train that results from superimposing A and
B (with suitable provision made for coincident
spikes), then f(A + B) = f(A) + f(B). For such
embeddings, then resulting metric is unchanged
by parallel translation:

D Aþ C,Bþ Cð Þ ¼ D A,Bð Þ ð5Þ

Spike train distances in this class generally
emphasize either the continuous aspect of spike
train topology or its discrete aspect. The family of
distances introduced by van Rossum (van Rossum
2001) is a prototypical example of the former. We
consider first the case of an unlabeled spike train,
which here is regarded as a sequence of delta
functions. The target vector space consists of sca-
lar functions of time (considered as a continuous
variable), and the embedding fconsists of a con-
volution by a kernel function K(t):

f Að Þ tð Þ ¼
ð1

�1
K t� tð Þ

XM Að Þ

j¼1

d t� tAj

� �
dt ð6Þ

Since the mapping in Eq. (6) from the spike
train A to the vector space element f(A) is linear, it
follows that the resulting metric, defined by
Eq. (4), is unchanged by parallel translation
(as in Eq. 5).

Typically the kernel function K in Eq. (6)
includes a parameter that expresses the temporal
resolution of the comparison between two spike
trains, e.g.,

K tð Þ ¼
1

t0
e�t=t0

0, otherwise

8<
: , t � 0: ð7Þ

If spikes in train A and train B are matched

within this resolution, i.e., if tAj � tBj

��� ��� � t0, then

the spike train distance between A and B will be
small. Gaussians, boxcars, and similar nonnega-
tive windowing functions are also reasonable
choices for K. These embedding functions are
conventionally used in conjunction with an Lp

norm for the target vector space,

f Að Þk k ¼
ð1

�1
f Að Þ tð Þj jpdt

0
@

1
A

1=p

, ð8Þ

usually with p = 2 (the Euclidean norm). Thus,
the net result of a linear embedding followed by
the vector space norm provides a Euclidean geom-
etry on spike trains.

To extend this kind of spike train distance to
the multineuronal setting (R labeled neurons), the
target vector space is taken to be vector-valued
functions of time (Houghton and Sen 2008), and
the norm is the L2-norm on the space of vector-
valued functions. To define the embedding func-
tion f, vectors v

!
l (typically, unit vectors) are

assigned to each of the R labels. With this
assignment,
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f Að Þ tð Þ ¼
ð1

�1
K t� tð Þ

XM Að Þ

j¼1

v
!
a jð Þd t� tAj

� �
dt

ð9Þ

Thus, the jth event, a spike on neuron a(j) at
time tj, is mapped to a bump (the kernel shape)
“pointing” in the direction v

!
a jð Þ that has been

assigned to neuron a(j). The angles between the
vectors v

!
l correspond to the extent to which the

spike train distance is sensitive to the label asso-
ciated with each spike. An alternative approach is
to define multidimensional kernels that spill over
from one neuron’s spike train to another’s (Tezuka
2014, 2018).

In the above examples, the embeddings are
linear, and, moreover, time reversal (formally,
replacing each tj with T � tM(A)+1�j) has no effect
on the resulting distances. Neither of these prop-
erties is needed for an embedding to yield a met-
ric; in fact, there are biological motivations to
consider distances that derive from embeddings
but lack these properties. For example, as a con-
sequence of synaptic facilitation and depression
(Sen et al. 1996), the effect of a spike on a post-
synaptic neuron depends on how much time has
elapsed since the previous spike. This dependence
can be incorporated into an embedding function
(Brasselet et al. 2011a; Houghton 2009), confer-
ring on it both nonlinearities and time-reversal
asymmetries.

Spike train distances based on an embedding
can also emphasize their discrete aspect. Specifi-
cally, a spike train can be discretized into “bins” of
width DT (typically chosen to be short enough so
that no bin contains more than two spikes) and
then regarded as a binary sequence. The Ham-
ming distance between two discretized spike
trains (i.e., an L1 distance in a vector space of
dimension T/DT) is a spike train distance. The
main distinction is that in contrast to the kernel-
based distances discussed above, spike trains that
have spikes in different bins are regarded as
equally distant, regardless of whether or not the
times of occurrence of the spikes are close.

Embeddings can also be used to construct mea-
sures of spike train similarity (i.e., measures that

decrease as spike trains become more dissimilar),
via the normalized inner product

r A,Bð Þ ¼ f Að Þ, f Bð Þh i
f Að Þk k f Bð Þk k , ð10Þ

where hu, vi is the inner product in the vector
space V and vk k ¼ ffiffiffiffiffiffiffiffiffiffi

v, vh ip
is the corresponding

norm. These similarity measures have an exact
correspondence to a spike train distance, as
cos�1(r(A, B)) is a metric, namely, the geodesic
distance between the unit vectors in the direction
of f(A) and f(B) on the unit sphere. The Haas and
White measure (Haas and White 2002) uses an
exponential kernel for the embedding (Eq. 6); the
Schreiber measure (Schreiber et al. 2003) uses a
Gaussian kernel. Since these measures are nor-
malized for the spike count of the individual
spike trains, they are only sensitive to temporal
pattern, and a provision needs to be made for the
empty spike train.

Cost-Based Spike Train Distances
While distances constructed via vector space
embeddings focus on either the continuous or dis-
crete aspects of the topology of spike trains, cost-
based distances attempt to combine these two facets.

The prototypical example was introduced by
Victor and Purpura, the “spike time” distance
(Victor and Purpura 1997). As is the case for the
other distances in this class, the key ingredient is a
set of elementary transformations between spike
trains, each of which is assigned a cost. Once the
elementary transformations have been specified,
the distance between two spike trains is the min-
imal total cost required to transform one spike
train into another. That is, the distance D(A, B) is
defined as

D A,Bð Þ ¼ min
XK�1

k¼0

c Xk,Xkþ1ð Þ, ð11Þ

where X0, . . ., XK is a sequence of spike trains with
X0= A and XK= B and each successive spike train
linked to the next by an elementary transformation
of cost c(Xk, Xk + 1) = c(Xk + 1, Xk). For the
specific case of the spike time distance, the
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elementary transformations consist of (i) inserting
a spike into a spike train, (ii) deleting a spike from
a spike train, and (iii) shifting a spike in time.
Inserting or deleting a spike is assigned a cost of
1; shifting a spike by an amount of time Dt is
assigned a cost q|Dt|. The parameter q plays the
same role as the parameter 1/t0 for the kernel-
based distances (Eq. 7): as q increases (or as t0
decreases), the distance becomes progressively
more sensitive to fine timing differences. For
q= 0, the distance is entirely insensitive to timing
differences (so, formally, it is a pseudometric),
since spikes can be moved “for free.” In this
limit, the distance which is often called the
“spike count distance” is simply the difference in
spike counts, D(A, B) = |M(A) � M(B)|.

The choice of elementary transformations
determines the qualitative nature of the distance.
A contrasting example of the spike time distance
is the “interspike interval” distance (Victor and
Purpura 1997), in which the elementary transfor-
mations act on interspike intervals, rather than on
the spike times themselves. Since changing the
length of one interspike interval shifts the time
of all successive spikes, two spike trains can be
close in terms of the spike interval distance, but
not in terms of the spike time distance. Thus, these
distances confer different topologies on the space
of spike trains: the topology of the spike time
distance is equivalent to that of the van Rossum
distance (Eq. 6) with a typical kernel, but the
topology of the spike interval distance is not.
Additionally, the spike time distance is invariant
under parallel translation (adding a common spike
train to the spike trains being compared, as in
Eq. (5)), while the spike interval distance is not.
Cost-based distances are typically non-Euclidean
(Aronov and Victor 2004; Dubbs et al. 2010).

Cost-based distances are also applicable to the
multineuron setting (Aronov et al. 2003). For the
spike time distance, a straightforward approach is
to include an elementary transformation that
assigns a cost to changing the neuronal label asso-
ciated with a spike. Parametric variation of this
cost changes the character of the distance from
one that is sensitive to overall population activity
(low cost to change the label) to one that is

sensitive to cross-population patterns (high cost
to change the label).

For cost-based distances, the overall distance
and the costs associated with elementary trans-
formations can be interpreted in terms of a gener-
ative model for spike trains (Dauwels et al. 2009).
Cost-based distances can also be formulated in
terms of “alignments” between spikes, rather
than transformations (Dubbs et al. 2010).

The above constructions can be generalized in
many ways. To name a few, normalization by
spike count can be applied; the costs of each
transformation (Victor et al. 2007) or alignment
(Dubbs et al. 2010) can be transformed by a power
law prior to summation; elementary transforma-
tions sensitive to burst structure can be added
(Victor and Purpura 1997); and different kinds of
elementary transformations can be combined.

Timescale-Independent Spike Train Distances
Complementary to the timescale-dependent
approaches, in recent years spike train distances
have been proposed which are timescale and thus
parameter free since they always adapt to the local
firing rate. While not allowing the functional char-
acterization and precision analysis described
above, single-valued methods give an objective
and comparable estimate of neuronal variability
(Chicharro et al. 2011). Measures in this group
include the ISI-distance (Kreuz et al. 2007), the
SPIKE-distance (Kreuz et al. 2013), and the
SPIKE-synchronization (Kreuz et al. 2015).

ISI-Distance and SPIKE-Distance
The ISI-distance DI and the SPIKE-distance DS

rely on instantaneous values in the sense that in a
first step the sequences of discrete spike times are
transformed into piecewise-continuous dissimi-
larity profiles I(t) and S(t). For the ISI-distance
(Kreuz et al. 2007), the dissimilarity profile is
derived from the interspike intervals, while in
the case of the SPIKE-distance (Kreuz et al.
2013), it is extracted from differences between
the spike times of the two spike trains. Both dis-
tances are then defined as the temporal average of
the respective dissimilarity profile, e.g., for the
SPIKE-distance
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DS ¼ 1

T

ðT
t¼o

S tð Þdt: ð12Þ

The two dissimilarity profiles rely on three
piecewise constant quantities which for each neu-
ron (X = A or X = B below) are assigned to every
time instant between 0 and T. These are the time of
the preceding spike

tXP tð Þ ¼ max tXi jtXi � t
� �

, ð13Þ

the time of the following spike

tXF tð Þ ¼ min tXi jtXi > t
� �

, ð14Þ

and the interspike interval

zXISI tð Þ ¼ tXF tð Þ � tXP tð Þ: ð15Þ

The ambiguity regarding the definition of the
very first and the very last interspike interval is
resolved by means of auxiliary spikes (Kreuz
et al. 2015).

ISI-Distance The ISI-distance (Kreuz et al.
2007) is a time-resolved, symmetric, and
timescale-adaptive measure of the relative firing
rate pattern. It is defined as the normalized ratio
between the instantaneous interspike intervals
zAISI tð Þand zBISI tð Þ (Fig. 1a):

I tð Þ ¼ zAISI tð Þ � zBISI tð Þ
max zAISI tð Þ, zBISI tð Þ� � : ð16Þ

This quantity is 0 when the ISIs in the two
spike trains are equal and approaches �1 and 1,
respectively, if the first or the second spike train is
much faster than the other. Since both directions
of deviation from identical ISIs are equally impor-
tant, the ISI-distance is calculated by temporal
averaging over the absolute values |I(t)| in
Eq. (12).

SPIKE-Distance The ISI-distance relies on the
relative length of simultaneous interspike inter-
vals and is thus capable to quantify similarities
in the neurons’ firing rate profiles. However, it is
not optimally suited to track synchrony that is
mediated by spike timing. This issue is addressed
by the SPIKE-distance (Kreuz et al. 2013) which
combines the properties of the ISI-distance with a
specific focus on spike timing.

The dissimilarity profile of the SPIKE-distance
is based on differences between the spike times in
the two spike trains. It is calculated in two steps:
first, for each spike, the distance to the nearest
spike in the other spike train is calculated. Then,
for each time instant, the relevant spike time dif-
ferences are selected, weighted, and normalized.
Here “relevant” means “local,” i.e., each time
instant is uniquely surrounded by four corner
spikes: the preceding spike of the first spike train
tAP, the following spike of the first spike train tAF,
the preceding spike of the second spike train tBP,
and, finally, the following spike of the second
spike train tBF (Fig. 1b). Each of these corner spikes
can be identified with a spike time difference, for
example, for the previous spike of the first spike
train

DtAP ¼ min
k

tAP � tBk
�� ��� � ð17Þ

and analogously for tAF, t
B
P, and tBF.

For each spike train separately, a locally
weighted average is employed. The weighting
factors ensure that the differences for the closer
spike dominate: the weighting factors depend on

zAP tð Þ ¼ t� tAP tð Þ ð18Þ

and

zAF tð Þ ¼ tAF tð Þ � t, ð19Þ

the intervals to the previous and the following
spikes for each neuron. The local weighting for
the spike time differences of the first spike train
reads
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SA tð Þ ¼ DtAP tð ÞzAF tð Þ þ DtAF tð ÞzAP tð Þ
zAISI tð Þ : ð20Þ

For the second spike train, SB(t) is obtained
analogously.

Averaging over the two spike train contribu-
tions and normalizing by the mean interspike
interval yield

S0 tð Þ ¼ SA tð Þ þ SB tð Þ
2 zXISI tð Þ� 	

X¼A,B

, ð21Þ

where zXISI tð Þ� 	
X¼A,B

is the average of the local

ISIs of spike trains A and B.
This quantity weights the spike time differ-

ences for each spike train according to the relative
distance of the corner spike from the time instant

Spike Train Distance, Fig. 1 Schematic of the three
timescale-independent measures. (a) The variables that
define the ISI-distance. The instantaneous interspike inter-
vals are used as estimates of the local firing rate. (b)
Additional variables employed in the definition of the
SPIKE-distance, which is based on spike time differences.
(c) Coincidence criterion for SPIKE-synchronization. The
coincidence window of each spike is derived from its two
surrounding interspike intervals. The two spikes on the left
side are considered coincident since both lie in each other’s
coincidence windows, while on the right, there is no

coincidence since the spike from the second spike train is
outside of the coincidence window from the spike of the
first spike train. The quantity tA,Bij in the text (Eq. 24) is
defined as tA,Bij ¼ min tAi , t

B
j

� �
. (Modified with permis-

sion from Fig. 1 of Satuvuori E, Malvestio I, Kreuz T:
Measures of spike train synchrony and directionality In:
Neuro-Math, Mathematical and Computational Neurosci-
ence: Cell, Network and Data analysis (Springer INdAM
series, 2018))
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under investigation. Averaging over this dissimi-
larity profile S0(t) according to Eq. (12) yields the
rate-independent SPIKE-distance (RI-SPIKE-
distance) DRI

S (Satuvuori et al. 2017), which
completely disregards any rate differences
between the two spike train and thus focuses
purely on spike timing information.

In order to also account for differences in firing
rate, in a last step, the two contributions from the
two spike trains are locally weighted by their
instantaneous interspike intervals. This leads to
the dissimilarity profile of the SPIKE-distance

S tð Þ ¼ SA tð ÞzBISI tð Þ þ SB tð ÞzAISI tð Þ
2 zXISI tð Þ� 	2

X¼A,B

ð22Þ

which is thus sensitive to both spike rate and spike
timing (Satuvuori and Kreuz 2018).

The dissimilarity profiles of both the ISI-
distance and the SPIKE-distance and thus both
distances are bounded in the interval [0, 1]. For
the ISI-distance, the minimum value 0 is obtained
for any periodic spike trains with the same period.
Thus the ISI-distance is a pseudometric, in which
all spike trains with a certain constant interspike
interval but overall time shifts form the equiva-
lence classes (Mulansky et al. 2015). On the other
hand, for the SPIKE-distance, the value 0 is
indeed obtained only for perfectly identical spike
trains, but it is possible to construct examples that
violate the triangle equality (Mulansky et al.
2015), so the SPIKE-distance is not a metric.

For both distances there exists a straightfor-
ward extension to estimate the time-resolved
level of dissimilarity within a group of spike trains
(Kreuz et al. 2009, 2013). It is the straightforward
average over all pairs of spike trains, but in these
cases, the averaging can be performed locally,
e.g., for the SPIKE-distance:

Sa tð Þ ¼ 1

M M � 1ð Þ=2
XM�1

n¼1

XM
m¼nþ1

Smn tð Þ: ð23Þ

SPIKE-Synchronization
SPIKE-synchronization (Kreuz et al. 2015) acts as
coincidence detectors and quantifies the level of
synchrony from the number of quasi-

simultaneous appearances of spikes. It is a mea-
sure of similarity, i.e., for identical spike trains, it
yields not its minimum value 0 but its maximum
value 1.

The calculation consists of two steps, coinci-
dence detection and a combination of normaliza-
tion and windowing. The first step builds on the
same bivariate and adaptive coincidence detection
that was used for event synchronization (Quian
Quiroga et al. 2002). The temporal resolution can
be adjusted with a coincidence window of fixed
size t, but in the parameter- and timescale-free
main variant, the maximum time lag tA,Bij up to

which two spikes tAi and tBj are considered to be
synchronous is adapted to the local spike rates
according to:

tA,Bij ¼1

2
min tAiþ1� tAi ,t

A
i � tAi�1,t

B
jþ1� tBj ,t

B
j � tBj�1

h i
:

ð24Þ

The coincidence criterion can be quantified by
means of a coincidence indicator

CA
i ¼ 1 if min j jtAi � tBj j

� �
< tA,Bij

0 otherwise

(
ð25Þ

(and analogously for CB
j ), which assigns to each

spike either a one or a zero depending on whether
it is part of a coincidence or not (Fig. 1c). Here the
minimum function already takes into account that
a spike can at most be coincident with one spike in
the other spike train. If a spike is exactly in
between two spikes from the other spike train,
this is not considered a coincidence.

The extension to the case of one group of more
than two spike trains is straightforward. After
performing bivariate coincidence detection for
every pair of spike trains, for each spike of every
spike train, a normalized coincidence counter

CA
i ¼ 1

M � 1

X
X 6¼A

CA,X
i ð26Þ

is obtained by averaging over all M � 1 bivariate
coincidence indicators involving the spike train A.
This way for both the bivariate and the
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multivariate case, we have defined a coincidence
counter for each individual spike in every spike
train. In order to obtain one combined similarity
profile, we pool the spikes of all the spike trains as
well as their coincidence counters by introducing
one overall spike index j. In case there exist exact
matches (perfectly coincident spikes), j counts
over all of these spikes. From this discrete set of
coincidence counters Cj, the SPIKE-
synchronization profile C(tj) is obtained via
C(tj) = C(j). Finally, SPIKE-synchronization is
defined as the average value of this profile

SC ¼ 1

Mp

XMp

j¼1

C tj
� � ð27Þ

with Mp ¼
P
X

M Xð Þ denoting the total number of

spikes in the pooled spike train.
The interpretation is very intuitive: SPIKE-

synchronization quantifies the overall fraction of
coincidences. It is zero if and only if the spike
trains do not contain any coincidences and reaches
one if and only if each spike in every spike train
has one matching spike in all the other spike
trains.

SPIKE-synchronization is complementary to
the distances described above. It is a measure of
spike matching based on a binary coincidence
criterion. If converted from a measure of similar-
ity into a measure of distance (by considering
1 � SC), it would remain symmetric, but it
would fail to be a metric. This is because of the
binariness of the coincidence criterion: there are
nonidentical spike trains that would have a dis-
tance of zero (violating Eq. (1)), and it is possible
to construct violations of the triangle inequality
(Eq. 3) (Mulansky et al. 2015). SPIKE-
synchronization is complemented by SPIKE-
order and spike train order (Kreuz et al. 2017),
two indicators that allow to sort spike trains from
leader to follower and to quantify the consistency
of the temporal leader-follower relationships for
both the original and the optimized sorting.

All three of these timescale-independent
approaches (the ISI-distance, the SPIKE-distance,
and the SPIKE-synchronization) have recently

been adapted for data containing multiple time-
scales by adding a notion of the relative impor-
tance of local differences compared to the global
timescales (Satuvuori et al. 2017).

Other Timescale-Independent Measures
The modulus- and the max-metric (Rusu and
Florian 2014) form another family of metrics
which is timescale free as well and can also be
turned into a time-resolved profile. Both measures
are more sensitive to large-scale temporal struc-
ture and less sensitive to spike counts and to fine
structure within bursts. The most recent proposal
in this group is spike-contrast, a further timescale-
independent and multivariate measure of spike
train synchrony (Ciba et al. 2018). It mostly yields
very similar results to the SPIKE-distance; how-
ever, it is complementary since it does not provide
a time-resolved dissimilarity profile but instead a
synchrony curve as a function of bin size (one of
several parameters).

Other Types of Spike Train Distances
There are several useful spike train distances that do
not fall into these major categories. The family of
metrics proposed in (Wu and Srivastava 2011)
resembles an embedding-based metric in that the
spike trains are mapped to functions using a kernel;
however, these metrics also allow for time to be
warped for one spike train relative to the other to
bring them into better alignment. In a manner which
is reminiscent of a cost-based metric, this warping is
associated with a penalty. This metric facilitates the
calculation of a “mean spike train,” something that
can also be calculated using an embedding-based
metric (Julienne and Houghton 2013).

The Hunter-Milton measure compares spike
times in one train with the nearest spike times in
the other (Hunter and Milton 2003). A choice of
scale parameter is required. Lyttle and Fellous
have proposed metrics to specifically assess the
similarity of spike trains with either common
silent periods or bursts (Lyttle and Fellous 2011).
Both metrics can be adapted to the dataset by
means of several parameters. Finally, the “coinci-
dence factor,” while not a distance, has also been
used to compare discretized spike trains based on
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a normalized count of coincidences (Jolivet et al.
2008; Kistler et al. 1997).

Applications: Analytical Methods

Spike train distances are the starting point for
many analysis and modeling strategies. The dis-
tinctive feature of this starting point (i.e., consid-
ering spike trains to be event sequences,
vs. considering them to be vectors) is that it allows
for a much more flexible kind of geometry and
focuses on intrinsic relations between spike trains,
rather than a coordinate system for them. As we
describe below, this enables a variety of
approaches to exploratory data analysis, neural
coding, and model testing. We first survey these
approaches according to the type of analysis and
then describe some examples of these applications
in neuroscience and behavior. For earlier reviews,
see Houghton and Victor (2011), Victor (2005),
and Victor and Purpura (2010).

Dimension Reduction
A main challenge in analyzing neural data is its
high dimensionality. Thus, as a first step in explor-
atory analysis or data visualization, it is often
helpful to construct a low-dimensional represen-
tation of a dataset that preserves key aspects of its
structure. From the spike train distance viewpoint,
the central goal is to preserve similarity; thus, the
crucial requirement in dimensional reduction is to
preserve the metric.

The classical approach to accomplishing this is
standard multidimensional scaling (Kruskal and
Wish 1978), which can be directly applied to
spike metrics. Multidimensional scaling is alge-
braically related to principal components analysis,
but in multidimensional scaling, there is no need
to identify coordinates or to conceptualize the
spike trains as points in a vector space. When
applied to a cost-based distance, multi-
dimensional scaling approach often leads to a
representation of the neural responses that reca-
pitulates the geometry of the domain being
represented (e.g., spatial phase (Aronov et al.
2003) or sound location (Victor and Purpura
1997)).

The global geometry of cost-based distances is
typically non-Euclidean (Aronov and Victor
2004). As a consequence, standard multi-
dimensional scaling can at best approximate
these (and perhaps other) spike train distances.
One approach to this problem is to apply multi-
dimensional scaling to a monotonic function of
the distance (such as dp for 0< p< 1), rather than
the raw distances themselves. For a sufficiently
small but data-dependent p, these derived dis-
tances can be exactly embedded into a Euclidean
space. An alternative approach is to seek an
embedding that focuses on local geometry: the
isomap (Tenenbaum et al. 2000) or local linear
embedding (Roweis and Saul 2000) approaches
can be used to expand a locally Euclidean repre-
sentation to a non-Euclidean manifold. The
t-distributed stochastic neighbor embedding
(t-SNE) is another such nonlinear dimensional
reduction approach, which is particularly suitable
for sampled data and also focuses on local geom-
etry. Specifically, combining spike train metrics
with t-SNE (van der Maaten and Hinton 2008) has
been found to be effective for single-neuron and
multineuronal datasets (Vargas-Irwin et al. 2015),
as well as for nonneural data – bat biosonar, an
acoustic emission that can be considered as a
sequence of pulses (Accomando et al. 2018).

Information-Theoretic Analysis
Spike train distances are also the starting point for
information-theoretic analyses of neural coding.
For example, they can be used as a way to estimate
the mutual information between a set of stimuli
and a set of responses, by determining the extent
to which neural responses to a set of stimuli form
reliable clusters. The dependence of this estimate
on the kind of spike train distance used (e.g., one
that is sensitive to spike times, vs. spike intervals,
or the degree of temporal precision of the dis-
tance) points to the features of the neural response
that carries the information (Satuvuori and Kreuz
2018; Victor and Purpura 1997). Spike train dis-
tances can also be combined with the
Kozachenko-Leonenko estimator (Kozachenko
and Leonenko 1987) to provide estimates of
mutual information, without the need for explicit
clustering (Houghton 2015; Houghton 2019;
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Shapira and Nelken 2013). It is important to note,
however, that these approaches typically yield
underestimates of mutual information, since they
focus on a single timescale and use a very limited
number of parameters to describe the possible
relationships between spike trains (Lopes-dos-
Santos et al. 2015).

Model Evaluation
Spike train distances provide a way to measure the
quality of a neural model, by determining the
distance between experimentally observed spike
trains and models of them (Kameneva et al. 2015).
Extending this idea, a spike time distance can also
be used as a cost function to be minimized by
adjusting model parameters (Lynch and Houghton
2015) or as a cost function to drive learning algo-
rithms that shape artificial networks to process
temporal patterns (Florian 2012). They can also
provide a way to quantify whether a model
accounts for neuronal variability, by determining
the distances between members of a set of spike
trains that represent samples of spontaneous activ-
ity or samples of responses to the same stimulus.

Applications to Neuroscience

As spike train metrics are metrics on sequences of
events, they can be applied to any problem where
the data are sets of event sequences. However, they
are primarily designed to express the metric struc-
ture of spike trains that is functionally or mecha-
nistically relevant and are most often applied to the
analysis of electrophysiological data.

One frequent application is as a tool for quanti-
fying how information is coded in spike trains. In
describing the different spike train metrics, it has
been noted that they often have a parameter inter-
polating between a spike count pseudometric and
metrics in which the precise timing of individual
spikes is very significant. In the case of the embed-
ding metrics, this parameter is the width of the
kernel used in the embedding, for example, if the
kernel is given by Eq. (7), it is t0; in the case of the
cost-based metric, it is q, the cost of moving a spike
(see discussion following Eq. (11)). This parameter
can be fitted to stimulus-evoked spike train data by

choosing the value where the metric-based cluster-
ing best matches clustering according to stimulus.
This gives an indication of the temporal scale rele-
vant to the coding of information about the stimulus
in the spike trains. This approach was used, for
example, in analyzing visual responses in V1, V2,
and V3 inmonkey in Victor and Purpura (1996) and
in analyzing auditory responses in zebra finch in
Narayan et al. (2006). A related approach is used
in Brasselet et al. (2009, 2011b) where a metric
analysis combined with a novel definition of mutual
information is used to argue for the primacy of the
latency of first spike in encoding tactile information
in human microneurography data.

In multineuronal spike train metrics, there is
often a parameter which specifies how significant
the individual neurons are in coding; this param-
eter interpolates between a population code where
the identity of the neuron firing a spike has no
effect on the distance and a “labeled line code”
where the spike train distance between a pair of
multineuron spike trains is effectively the sum of
the distances between the individual pairs of spike
trains for individual neurons. This was used, for
example, in Clemens et al. (2011) to analyze the
degree of population coding of auditory informa-
tion in grasshoppers.

These applications all compare responses by
the same neuron, or neurons, across different stim-
uli. Another application of spike train metrics is
the detection of cell assemblies; this involves
comparing the spiking responses of different neu-
rons to the same stimulus (Humphries 2011,
2017): roughly, a network is formed whose
nodes correspond to neurons and the links to a
measure of similarity derived from a spike train
metric; assemblies are then identified using com-
munity detection algorithms. This approach has
been applied to CA3 in hippocampus (Li et al.
2010), to reaching tasks in monkey (Newman
et al. 2011), and similar ideas can be applied to
recordings of activity in the retina (Cutts and
Eglen 2014). In Kreuz et al. (2013), the SPIKE-
distance is used to study synchrony between
recording sites in data recorded from epilepsy
patients. It is demonstrated that during ictal
periods, there is an elevated level of neuronal
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synchrony in the hemisphere containing the sei-
zure focus.

It is important to note that the spike metric
framework, by itself, is not a statistical one – a
spike metric yields a number that indicates the
distance between two specific spike train exam-
ples, and not a way of assessing whether this
difference is statistically significant. Any assess-
ment of statistical significance requires either a
model for spike train variability or experimental
assessment of this variability, which is indepen-
dent of the choice of the metric. With a model of
variability or a data-driven assessment of it, stan-
dard statistical techniques (either parametric or
nonparametric) can be applied.

Computation of Spike Train Distances

Computation of distances based on embeddings is
straightforward, as the essential steps are convo-
lution and pairwise multiplication. Houghton and
Kreuz (2012) introduced a markage trick which
reduces the computational cost for the regular van
Rossum metric between two spike trains of simi-
lar length,M(A)~M(B), to orderM=M(A) +M(B)
from order M2. The same markage trick can also
be used for the multineuron extension.

For cost-based distances, dynamic program-
ming algorithms modeled after alignment algo-
rithms for genetic sequences (Needleman and
Wunsch 1970; Sellers 1974) provide an efficient
way to identify the minimal-cost sequence of trans-
formations in the single-neuron setting and for
settings with a small number of neurons. The num-
ber of computations is approximately O(M2) for
unlabeled spike trains containing M events and
O(MR + 1) when R neurons (labels) are present.
These algorithms extend to enable simultaneous
computation of distances for all values of its param-
eters (cost to move a spike, cost to change a label)
(Victor et al. 2007). For the single-neuron scenario
and single values of the cost parameter, a graph-
theoretic approach based on the “Hungarian” algo-
rithm may provide improved performance (Dubbs
et al. 2010). For five or more neurons, an incre-
mental matching algorithm (Diez et al. 2012) is the
most efficient approach currently available; the

computational complexity (specifically, the num-
ber of computations required) scales approximately
asM6, independent of the number of neurons.

Finally, the calculation of the time-resolved
and timescale-independent spike train distances
is very straightforward since it involves only sim-
ple arithmetic. Computational complexity for the
ISI-distance and the SPIKE-distance is O(M); for
SPIKE-synchronization, it is O(M2).

A comprehensive compilation of links to code
to calculate spike train distances can be found
at http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/
sourcecode.html. Additionally, software for the
cost-based distances may be found at http://www-
users.med.cornell.edu/~jdvicto/pubalgor.html,
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/
Dynamic/Edit/, and in the Spike Train Analysis
Toolkit, at http://neuroanalysis.org/. The latter site
also includes modules for information-theoretic cal-
culations based on these distances.

Cross-References

▶Correlation Analysis of Parallel Spike Trains
▶Earth Mover Distance
▶Edit Length Distances
▶Metric Space Analysis of Neural Information
Flow

▶ Point Processes
▶ Spike Train
▶ Spike Train Analysis: Overview
▶ Statistics of Inter-Spike Intervals
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