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Abstract: Kernel density estimation is a technique for approximating probability1

distributions. Here, it is applied to the calculation of mutual information on a metric space.2

This is motivated by the problem in neuroscience of calculating the mutual information3

between stimuli and spiking responses; the space of these responses is a metric space. It4

is shown that kernel density estimation on a metric space resembles the k-nearest-neighbor5

approach. This approach is applied to a toy data-set designed to mimic electrophysiological6

data.7

Keywords: mutual information, neuroscience, electrophysiology, metric spaces, kernel8

density estimation9

1. Introduction10

This paper is concerned with the calculation of mutual information for spike trains using the data11

that are available in a typical in vivo electrophysiology experiment in the sensory system. It uses a12

kernel-based estimation of probability distributions.13

In particular, this paper is concerned with computing the mutual information I(R;S) between14

two random variables, R and S. The motivating neuroscience example is a typical sensory pathway15

electrophysiology experiment in which the corpus of sensory stimuli are presented over multiple trials,16

so there is a set of recorded responses for each of a number of stimuli. The stimuli are drawn from a17

discrete space, the corpus, but the responses are spike trains. The space of spike trains is peculiar; locally18

it is like a smooth manifold with the spike times behaving like coordinates, but globally it is foliated into19
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subspaces, each with a different number of spikes. The space of spike trains does, however, have a20

metric. As such, S takes values in a discrete set, S, and models the stimulus, and R takes values in a21

metric space,R, and models the response.22

R is not a discrete space and so, to calculate the mutual information between S and R, it is necessary23

to either discretize R or to use differential mutual information. In the application of information theory24

to electrophysiological data, it is common to take the former route and discretize the data. Here the latter25

alternative is chosen and the differential mutual information is estimated.26

The mutual information between two random variables R and S is a measure of the average amount27

of information that is gained about S from knowing the value of R. With S a discrete random variable28

taking values in S and R a continuous random variable, the mutual information is29

I(R;S) =
∑
s∈S

∫
R
p(r, s) log2

p(r, s)

p(r)p(s)
dr (1)

where dr is the measure onR: computing the differential mutual information between R and S requires30

integration over R. Integration requires a measure, and when there are coordinates on a space, it is31

common to use the integration measure derived from these coordinates.32

The space of spike trains has no system of coordinates and so there is no coordinate-based measure.33

This does not mean that the space has no measure, as a sample space it has an intrinsic measure34

corresponding to the probability distribution; thus, there is a measure, just not one derived from35

coordinates. The probability of an event occurring in a region of sample space gives a volume for36

that region. In other words, the volume of a region D can be identified with P (x ∈ D). This is the37

measure that will be used throughout this paper; it does not rely on coordinates and so can be applied to38

the case of interest here.39

Of course, in practice, the probability density is not usually known on the space of spike trains, but40

P (x ∈ D) can be estimated from the set of experimental data. A Monte-Carlo-like approach is used: the41

volume of a region is estimated by counting the fraction of data points that lie within it42

vol(D) = P (x ∈ D) ≈ number of data points in D
total number of points

. (2)

This is exploited in this paper to estimate the volume of square kernels, making it possible to estimate43

conditional probabilities using kernel density estimation.44

The classical approach to the problem of estimating I(R;S) is to map the spike trains to binary45

words using temporal binning [1,2] giving a histogram approximation for p(r, s). This approach is46

very successful, particularly when supplemented with a strategically chosen prior distribution for the47

underlying probability distribution of words [3,4]. This is sometimes called the plug-in method and that48

term is adopted here. One advantage of the plug-in method is that the mutual information it calculates49

is correct in the limit: in the limit of an infinite amount of data and an infinitesimal bin size it gives the50

differential mutual information.51

Nonetheless, it is interesting to consider other approaches, and in this spirit, an alternate approach is52

presented here. This new method exploits the inherent metric structure of the space of spike trains, it is53

very natural and gives an easily implemented algorithm which is accurate on comparatively small data54

sets.55
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2. Methods56

This section describes the proposed method for calculating mutual information. Roughly, the57

conditional probability is approximated using kernel density estimation and, by using the unconditioned58

probability distribution as a measure, integration is approximated by the Monte-Carlo method of59

summing over data points.60

Since this is a kernel-based approach, a review of kernel density estimation is given in section 2.1.61

This also serves to establish notation. The two key steps used to derive the kernel-based estimate are a62

change of measure and a Monte-Carlo estimate. The change of measure, described in section 2.2, permits63

the estimation of probabilities by a simple Monte-Carlo method. The new measure also simplifies the64

calculation of I(R;S), resulting in a formula involving a single conditional distribution. This conditional65

distribution is estimated using a Monte-Carlo estimate in section 2.3.66

2.1. Kernel Density Estimation67

The non-parametric kernel density estimation (KDE) method [6–8] is an approach to estimating68

probability densities. In KDE, a probability density is estimated by filtering the data with a kernel. This69

kernel is normalized with integral one and is usually symmetric and localized. For an n-dimensional70

distribution with outcome vectors {x1,x2, . . . ,xm} and a kernel k(x) the estimated distribution is71

usually written72

p̃(x) =
1

m

∑
i

k(x− xi) (3)

where, because the argument is x − xi, there is a copy of the kernel centered at each data point. In73

fact, this relies on the vector-space structure of n-dimensional space; in the application considered here74

a more general notation is required, with k(x;y) denoting the value at x of the kernel when it is centered75

on y. In this situation the estimate becomes76

p̃(x) =
1

m

∑
i

k(x;xi). (4)

The square kernel is a common choice: for a vector space this is77

k(x;y) =

{
1
V
‖x− y‖ < 1

0 otherwise
(5)

where V is chosen so that the kernel integrates to one. The kernel is usually scaled to give it a bandwidth:78

k(x;y, h) =

{
1
hV
‖x− y‖ < h

0 otherwise
. (6)

This bandwidth h specifies the amount of smoothing. The square kernel is the most straight-forward79

choice of kernel mathematically and so in the construction presented here a square kernel is used.80

In the case which will be of interest here, where x and y are not elements of a vector space, the81

condition ‖x − y‖ < h must be replaced by d(x,y) < h where d(x,y) is a metric measuring the82

distance between x and y. Calculating the normalization factor, V , is more difficult since this requires83

integration. This problem is discussed in the next subsection.84
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2.2. Change of Measure85

Calculating the differential mutual information using KDE requires integration, both the integration86

required by the definition of the mutual information, and the integration needed to normalize the kernel.87

As outlined above, these integrals are estimated using a Monte-Carlo approach; this relies on a change88

of measure which is described in this section.89

For definiteness, the notation used here is based on the intended application to spike trains. The90

number of stimuli is ns, and each stimulus is presented for nt trials. The total number of responses91

nr is then nr = nsnt. Points in the set of stimuli are called s and in the response space, r; the actual92

data points are indexed, ri, and (ri, si) is a response-stimulus pair. As above, the random variables for93

stimulus and response are S and R whereas the set of stimuli and the space of responses are denoted by94

a calligraphic S andR respectively. It is intended that when the method is applied the responses, r ∈ R,95

will be spike trains.96

The goal is to calculate the mutual information between the stimulus and the response. Using the97

Bayes theorem, this is98

I(R;S) =
∑
s∈S

∫
R
p(r, s) log2

p(r|s)
p(r)

dr. (7)

Unlike the differential entropy, the differential mutual information is invariant under the choice of99

measure. Typically, differential information theory is applied to examples where there are coordinates100

(x1, x2, . . . , xn) on the response space and the measure is given by dr = dx1dx2 . . . dxn. However, here101

it is intended to use the measure provided by the probability distribution p(r). Thus, for a region D ⊂ R102

the change of measure is103

vol(D) =

∫
D
p(r)dr =

∫
D
dβ (8)

so104

dβ = p(r)dr. (9)

The new probability density relative to the new measure, pβ(r), is now one:105

pβ(r) =
p(r)

dβ/dr
= 1. (10)

Furthermore, since p(r|s) and p(r) are both densities, p(r|s)/p(r) is invariant under a change of measure106

and107

I(R;S) =
∑
s

∫
R
pβ(r, s) log2

pβ(r|s)
pβ(r)

dβ =
∑
s

∫
R
pβ(r, s) log2 pβ(r|s)dβ (11)

where, again, pβ(r, s) and pβ(r|s) are the values of the densities p(r, s) and p(r|s) after the change of108

measure.109

The expected value of any function f(R, S) of random variables R and S is110

〈f〉 =
∑
s∈S

∫
R
pβ(r, s)f(r, s)dβ (12)

and this can be estimated on a set of outcomes {(ri, si)} as111

〈f〉 ≈ 1

nr

∑
i

f(ri, si). (13)
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For the mutual information this gives112

I(R;S) ≈ 1

nr

∑
i

log2 pβ(ri|si). (14)

Now, an estimate for pβ(ri|si) is needed; this is approximated using KDE.113

2.3. A Monte-Carlo Estimate114

One advantage to using dβ as the measure is that pβ(r) = 1 and this simplifies the expression115

for I(R;S). However, the most significant advantage is that under this new measure volumes can be116

estimated by simply counting data points. This is used to normalize the kernel. It is useful to define117

the support of a function: if f(r) is a function then the support of f(r), supp[f(r)], is the region of its118

domain where it has a non-zero value,119

supp[f(r)] = {r : f(r) 6= 0}. (15)

Typically the size of a square kernel is specified by the radius of the support. Here, however, it is120

specified by volume. In a vector space where the volume measure is derived from the coordinates, there121

is a simple formula relating radius and volume. That is not the case here and specifying the size of122

a kernel by volume is not equivalent to specifying it by radius. Choosing the volume over the radius123

simplifies subsequent calculations and also has the advantage that the size of the kernel is related to the124

number of data points. This also means that the radius of the kernel varies acrossR.125

The term bandwidth will be used to describe the size of the kernel even though here the bandwidth is126

a volume rather than a radius. Since dβ is a probability measure, all volumes are between zero and one:127

let h be a bandwidth in this range. If k(r′; r, h) is the value at r′ of a square kernel with bandwidth h128

centered on r, the support will be denoted as S(r;h):129

S(r;h) = supp[k(r′; r, h)] (16)

and the volume of the support of the kernel is vol[S(r;h)]. The value of the integral is set at one,130 ∫
S(r;h)

k(r′; r, h)dβ = 1, (17)

and so, since the square kernel is being used, k(r′; r, h) has a constant value of 1/vol[S(r;h)] throughout131

S(r;h).132

Thus, volumes are calculated using the measure dβ based on the probability density. However, this133

density is unknown and so volumes need to be estimated. As described above, using dβ, the volume134

of a region is estimated by the fraction of data points that lie within it. In other words, the change of135

measure leads to a Monte-Carlo approach to calculating the volume of any region. In the Monte-Carlo136

calculation the volume of the support of a kernel is estimated as the fraction of data points that lie within137

it. A choice of convention has to be made between defining the kernel as containing bhnrc or dhnre138

points, that is, on whether to round hnr down or up. The former choice is used, so, the kernel around a139
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point r is estimated as the region containing the nearest nh = bhnrc points to r, including r itself. Thus,140

the kernel around a point ri is defined as141

k(r; ri, nh) =

{
1
nh

r is one of the nh closest points to ri
0 otherwise

(18)

and the support S(ri;nh) has rj ∈ S(ri;nh) if k(rj; ri, nh) = 1/nh, or, put another way, rj is one of142

the nh nearest data points. In practice, rather than rounding hnr up or down, the kernel volume in a143

particular example can be specified using nh rather than h.144

Typically, kernels are balls: regions defined by a constant radius. As such, the kernel described here145

makes an implicit assumption about the isotropic distribution of the data points. However, in the normal146

application of KDE special provision must be made near boundaries, where the distribution of data points147

is not isotropic [14]. Here these cases are dealt with automatically.148

Since pβ(ri|si) = nspβ(ri, si) here, the conditional distribution pβ(ri|si) is estimated by first149

estimating pβ(ri, si). As described above, a kernel has a fixed volume relative to the measure based150

on pβ(r). Here the kernel is being used to estimate pβ(ri, si):151

p̃β(ri, si) =
c(ri, si;nh)

nh
(19)

where c(ri, si;nh) is the number of data points evoked to stimulus si for which ri is one of the nh closest152

points153

c(ri, si;nh) = |{(rj, si) : rj ∈ S(ri;nh)}| (20)

This gives the estimated mutual information154

I(R;S) ≈ I(R, S;nh) =
1

nr

∑
i

log2

nsc(ri, si;nh)

nh
(21)

Remarkably, although this is a KDE estimator it resembles a k-, or here nh-, nearest-neighbors estimator.155

Basing KDE on the data available for spike trains appears to lead naturally to nearest neighbor estimation.156

The formula for I(R, S;nh) behaves well in the extreme cases. If the responses to each stimulus157

are close to each other, but distant from responses to all other stimuli, then c(ri, si;nh) = nh for all158

stimulus-response pairs (ri, si). That is, for each data point, all nearby data points are from the same159

stimulus. This means that the estimate will be160

I(R, S;nh) = log2 ns. (22)

This is the correct value because, in this case, the response completely determines the stimulus, and so161

the mutual information is exactly the entropy of the stimulus. On the other hand, if the responses to each162

stimulus have the same distribution then c(ri, si;nh)/nh ≈ 1/ns, so the estimated mutual information163

will be close to zero. This is again the correct value, because in this case the response is independent of164

the stimulus.165



Version October 13, 2013 submitted to Entropy 7 of 13

3. Results166

As a test, this method has been applied to a toy data set modelled on the behavior of real spike trains. It167

is important that the method is applied to toy data that resemble the data type, electrophysiological data,168

that the method is intended to perform well on. As such, the toy model is selected to mimic the behavior169

of sets of spike trains. The formula derived above acts on the matrix of inter-data-point distances rather170

than the points themselves, and so the data set is designed to match the distance distribution observed in171

real spike trains [5]. The test data set is also designed to present a stiff challenge to any algorithm for172

estimating information.173

The toy data are produced by varying the components of one of a set of source vectors. More174

precisely, to produce a test data set a variance σ2 is chosen uniformly from [0, 1] and ns sources are175

chosen uniformly in a nd-dimensional box centered at the origin with unit sides parallel to the Cartesian176

axes. Thus, the sources are all nd-dimensional vectors. The data points are also nd-dimensional vectors,177

they are generated by drawing each component from a normal distribution about the corresponding178

component of the source. Thus, data points with a source s = (s1, s2, . . . , snd
) are chosen as179

r = (r1, r2, . . . , rnd
) where the ri are all drawn from normal distributions with variance σ2 centered180

at the corresponding si:181

ri ∼ N (si, σ
2). (23)

nt data points are chosen for each source giving nr = nsnt data points in all.182

Each test uses 200 different data sets; random pruning is used to ensure the values of mutual183

information are evenly distributed over the whole range from zero to log2 ns, otherwise there tends to be184

an excess of data sets with a low value. The true mutual information is calculated using a Monte-Carlo185

estimate sampled over 10,000 points. The actual probability distributions are known: the probability of186

finding a point r generated by a source s depends only on the distance d = |r − s| and is given by the187

χ-distribution188

p(d) =
21−nd/2

Γ(nd/2)

(
d

σ

)nd−1

e−d
2/2σ2

. (24)

There is a bias in estimating the mutual information, in fact, bias is common to any approach to189

estimating mutual information [15]. The problem of reducing bias, or defining the mutual information so190

that the amount of bias is low, is well studied and has produced a number of sophisticated approaches [4,191

15–19]. One of these, quadratic estimation, due to [16,18], is adapted to the current situation. Basically,192

it is assumed that for large numbers of data points nt the estimated information Ĩ(R;S) is related to the193

true mutual information I(R;S) by194

Ĩ(R;S) = I(R;S) +
A

nt
+
B

n2
t

+O(1/n3
t ). (25)

This asymptotic expansion is well-motivated in the case of the plug-in approach to spike train information195

[15,16,20–22] and it is assumed the same expansion applies. To extract I(R;S) the estimate I(R, S;nh)196

is calculated for λnr with λ taking values from 0.1 to one in 0.1 increments. Least squares fit is used to197

estimate I(R;S) from these ten values.198

The new method works well on these toy data. It is compared to a histogram approach where the199

nd-dimensional space is discretized into bins and counting is used to estimate the probability of each200
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bin. This is an analog of the plug-in method and the same quadratic estimation technique is used to201

reduce bias.202

In Fig. 1 the new method is compared to the histogram method when ns = 10 and nd = 3 and for203

both low and high numbers of trials, nt = 10 and nt = 200. For the histogram method the optimum204

discretization width is used. This optimal width is large, h = 5 in each case; this roughly corresponds205

to a different bin for each octant of the three-dimensional space containing the data. In the new method206

the bandwidth is not optimized on a case by case basis, instead, the kernel bandwidth nh is chosen as207

being equal to the number of trials nt. It can be seen that the new method is better at estimating the208

information; for nt = 10 it has an average absolute error of 0.189 bits, compared to 0.481 bits for the209

histogram method, for nt = 200 the average absolute error is 0.083 bits, compared to 0.442 bits for the210

histogram approach.211

Figure 1. Comparing the KDE to the histogram method for ten sources, ns = 10, and
three dimensions nd = 3. In each case the true information is plotted against the estimated
information; the line y = x which represents perfect estimation is plotted for clarity. For
convenience, the mutual information has been normalized, so in each case the value plotted is
the estimate of I(R;S)/ log2 ns, with a maximum value of one; in the cases plotted here that
means the information is measured in ban. A and B show the distribution for the histogram
method for nt = 10 and nt = 200, C and D show the kernel method.
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In Fig. 2 the histogram and kernel methods are compared for ns = 10 and nd = 10 and for ns = 3212

and nd = 3; the number of trials is nt = 200 in each case. The kernel method outperforms the histogram213

method. When ns = 10 and nd = 10 the average absolute error for the kernel method is 0.139 bits,214

compared to 0.876 bits for the histogram method; for ns = 3 and nd = 3 its average absolute error215

is 0.076 bits compared to 0.141 bits for the histogram. Furthermore, the errors for the kernel method216

are less clearly modulated by the actual information, which makes the method less prone to producing217

misleading results.218

Figure 2. Comparing the KDE to the histogram method for high and low numbers of sources
and dimensions. The true information is plotted against the estimated information; in A and
C ns = 10 and nd = 10, in B and D ns = 3 and nd = 3. The top row, A and B, are for
the histogram method, the bottom row, C and D, are for the kernel method. As before, the
normalized information, I(S;R)/ log2 ns is plotted, so for ns = 10 the information is in ban,
for ns = 3 it is in trit and in each case the maximum mutual information is one. nr = 200

for all graphs.
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Although the actual method presented here is very different, it was inspired in part by the transmitted220

information method for calculating mutual information using metric-based clustering described in [26]221

and by the novel approach introduced in [11] where a kernel-like approach to mutual information222

is developed. Another significant motivation was the interesting technique given in [12] where the223

information is estimated by measuring how large a sphere could be placed around each data point without224

it touching another data point. In [12], the actual volume of the sphere is required, or rather the rate the225

volume changes with diameter. This is calculated by foliating the space of spike trains into subspaces226

with fixed spike number and interpreting the spike times as coordinates. This is avoided here by using the227

Monte-Carlo estimate of volumes. Finally, the copula construction is related to the approach described228

here. In fact, the construction here can be thought of as a reverse copula construction [13].229

An important part of the derivation of the kernel method is the change of measure to one based on230

the distribution. Since the kernel size is defined using a volume based on this measure, the radius of231

the kernel adapts to the density of data points. This is similar to the adaptive partitioning described for232

example in [24]. Like the plug-in method of computing mutual information for spike trains, adaptive233

partitioning is a discretization approach. However, rather than breaking the space into regions of fixed234

width, the discrete regions are chosen dynamically, using estimates of the cumulative distribution, similar235

to what is proposed here.236

One striking aspect of KDE seen here is that it reduces to a kth nearest-neighbor (kNN) estimator.237

The kNN approach to estimating the mutual information of variables lying in metric spaces has been238

studied directly in [23]. Rather than using a KDE of the probability distribution, a Kozachenko-Leonenko239

estimator [25] is used. To estimate I(X;Y ) whereX and Y are both continuous random variables taking240

values in X and Y , Kozachenko-Leonenko estimates are calculated for H(X), H(Y ) and H(X, Y ); by241

using different values of k in each space the terms that would otherwise depend on the dimension of X242

and Y cancel.243

This approach can be modified to estimate I(R;S) where S is a discrete random variable. Using the244

approach described in [23] to estimate H(R) and H(R|S) gives245

Ie(R;S) ≈ z(nk) + z(ntns)−z(nt)−
1

nr

∑
i

z[C(ri, si;nk)] (26)

where z(x) is the digamma function, nk is an integer parameter andC(ri, si;nk) is similar to c(ri, si;nh)246

above. Whereas ck(ri, si;nh) counts the number of responses to si for which ri is one of the nh closest247

data points, C(ri, si;nk) is computed by first finding the distance d from ri to the nkth nearest spike-train248

response to stimulus si; thenC(ri, si;nk) counts the number of spike trains, from any stimulus, that are at249

most a distance of d from ri. Ie(R;S) is the mutual information with base e, so I(R;S) = Ie(R;S)/ ln 2.250

During the derivation of this formula, expressions involving the dimension of S appear, but ultimately251

they all cancel, leaving an estimate which can applied in the case of interest here, where S has no252

dimension. Since the digamma function can be approximated as253

z(x) = ln x− 1

2x
(27)

for large x this kNN approach and the kernel method produce very similar estimates. The similarity254

between the two formulas, despite the different routes taken to them, lends credibility to both estimators.255
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Other versions of the kernel method can be envisaged. A kernel with a different shape could be used256

or the kernel could be defined by the radius rather than by the volume of the support. The volume of the257

support and therefore the normalization would then vary from data point to data point. This volume could258

be estimated by counting, as it was here. However, as mentioned above, the volume based bandwidth259

has the advantage that it gives a kernel which is adaptive, the radius varies as the density of data points260

changes. Another intriguing possibility is to investigate if it would be possible to follow [12] and [23]261

more closely than has been done here and use a Monte-Carlo volume estimate to derive a Kozachenko262

and Leonenko estimator. Finally, KDE applied to two continuous random variables could be used to263

derive an estimate for the mutual information between two sets of spike trains, or between a set of spike264

trains and a non-discrete stimulus such as position in a maze.265

There is no general, principled, approach to choosing bandwidths for KDE methods. There are266

heuristic methods, such as cross-validation [9,10], but these include implicit assumptions about how the267

distribution of the data is itself drawn from a family of distributions, assumptions which may not apply268

to a particular experimental situation. The KDE approach developed here includes a term analogous to269

bandwidth and, although a simple choice of this bandwidth is suggested and gives accurate estimates,270

the problem of optimal bandwidth selection will require further study.271

Applying the KDE approach to spike trains means it is necessary to specify a spike train metric272

[26–28]. Although the metric is only used to arrange points in order of proximity, the dependence273

on a metric does mean that the estimated mutual information will only include mutual information274

encoded in features of the spike train that affect the metric. As described in [12], in the context of275

another metric-dependent estimator of mutual information, this means the mutual information may276

under-estimate the true mutual information, but it does allow the coding structure of spike trains to277

be probed by manipulating the spike train metrics.278

It is becoming increasingly possible to measure large number spike trains from large numbers of spike279

trains simultaneously. There are metrics for measuring distances between sets of multi-neuron responses280

[29–31] and so the approach described here can also be applied to multi-neuronal data.281
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