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Born laughing, I’ve believed in the Absurd,

Which brought me this far; henceforth, if I can,

I must impersonate a serious man.1

1John Updike, Midpoint.
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Chapter 1

Monopoles and the Nahm equations

The Euler-Poinsot equations for the motion of a spinning top in the absence of an

external field are both solvable and nonlinear. Although this thesis concerns monopoles,

the techniques that are used often originate with the Euler-Poinsot equations. This is

because Bogomolny-Prasad-Sommerfield (BPS) monopoles are solutions to the Bogomolny

equation, this equation is equivalent to the Nahm equations and the Nahm equations are,

in turn, spinning top equations.

In SU2 Yang-Mills-Higgs theory, with a suitable symmetry breaking potential, the clas-

sical Euler-Lagrange equations have solutions which are topological solitons. Far from

these solitons, the Higgs field is approximately constant and breaks the SU2 theory to a U1

theory. Here, a conventional magnetic field can be defined and from a great distance the

solitons resemble Dirac monopoles. This is why the solitons are called magnetic monopoles.

Unlike a Dirac monopole, however, a solitonic monopole is smooth and has an extended

core. It is outside of this core that it resembles a point source of scalar and magnetic fields.

The topological enumeration of solitonic magnetic monopoles relies on the asymptotic

symmetry breaking due to the Higgs potential. However, if the symmetry breaking is

adopted as a boundary condition, this enumeration can occur without Higgs self-coupling.

In the past, it was common to imagine this boundary condition as the residuum of a now-

removed symmetry breaking potential. This zero self-coupling case is called the Prasad-

Sommerfield limit [PS].
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In the Prasad-Sommerfield limit, there is a first order equation for static minimum en-

ergy solutions [Bo]. This is the Bogomolny equation. Solutions of the Bogomolny equation

necessarily solve the Euler-Lagrange equations. Unlike the Euler-Lagrange equations, the

Bogomolny equation is integrable. Its solutions are classified by the topological charge;

a topological charge k solution is called a k-monopole. Remarkably, there is a (4k − 1)-

dimensional space of gauge inequivalent k-monopoles. Although the moduli space is the

space of static monopoles, a monopole in motion can be approximated by a static monopole,

if the motion is sufficiently slow. Furthermore, the motion itself is approximated by geodesic

flow in the moduli space [Ma2, St].

The monopole moduli space is isometrically diffeomorphic to the moduli space of solu-

tions to the Nahm equations. These are a set of ordinary nonlinear differential equations

for three matrix valued functions known as Nahm data. The Nahm equations are described

in Sect. 1.2 and the equivalence of Nahm data and BPS monopoles is discussed in Sect.

1.5.

The Nahm data are known for 2-monopoles. In this case the Nahm equations reduce to

the Euler-Poinsot equations and are solved by elliptic functions. This is described in Sect.

1.3. The Euler-Poinsot equations are the subject of considerable historic investigation. In

Sect. 1.4, it is explained why, from general arguments, it is unsurprising that their solutions

are elliptic.

The final introductory section is Sect. 1.6. It explains the Nahm equations for SUn

BPS monopoles. If the unbroken gauge group is SUn and the boundary conditions break

this to the maximal torus, then monopoles corresponding to different U1’s in the maximal

torus are distinct. Each distinct monopole type has its own Nahm data.

SUn monopoles are used in Sect. 1.7 to construct new hyperKähler manifolds. Monopole

moduli spaces are essentially hyperKähler manifolds. HyperKähler manifolds are mani-

folds with anticommuting complex structures and are of contemporary interest. Those

hyperKähler manifolds which are monopole moduli spaces have a natural isometric SO3

action: rotation of the monopole in space. In Sect. 1.7, it is noted that this SO3 isometry

can be broken. Because monopoles corresponding to different U1 factors are distinct, it
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is possible to independantly change the mass of one type of monopole. The infinite mass

limit breaks the SO3 isometry and yields a new hyperKähler manifold. This construction

may lead to a great number of new hyperKähler manifolds. However, because the Nahm

equations are not solved in general, only two cases are studied. These are the cases where

two monopoles of one type have finite mass and either one or two monopoles of distinct

type are fixed by infinite mass. It is found that the resulting hyperKähler manifolds are

nonsingular for most, but not all, fixed monopole positions.

A multimonopole is a monopole of charge higher than two. Until recently, few mul-

timonopoles were known. In Chapter 2, there are new multimonopoles. These multi-

monopoles are discovered as Nahm data. They have large symmetries; the symmetries of

Platonic solids. The symmetry is imposed to simplify the Nahm equations to the point of

tractability. In fact, the Nahm data are elliptic. By using symmetry, it is also possible to

discuss some low energy scattering processes during which these monopoles are formed.

In Chapter 3, it is explained why the Nahm data of Chapter 2 are elliptic. This follows

from the same general argument as that used to explain why the 2-monopole Nahm data

are elliptic. Once this is understood, it is possible to seek all multimonopoles with elliptic

Nahm data. This search leads to the discovery of a one-parameter family of 4-monopoles

and a two-parameter family of 3-monopoles. When some of these new 3-monopoles are

examined, it is found that the fields have a surprising characteristic: the Higgs field has

anti-zeros.

The reader wishing to learn about BPS monopoles is recommended the introductory

material in the thesis of Samols [Sa]. The approximation of low energy dynamics by

geodesic flow in the moduli space is very elegantly reviewed there. The book by Atiyah and

Hitchin [AH] is essential reading. In addition to the important results it contains concerning

the 2-monopole metric, it also reviews the mathematical treatment of BPS monopoles and

describes the geometry of moduli spaces. The introductory part of [HMM] also reviews the

mathematical tools available to the student of monopoles. The book by Audin [A] is a very

rewarding exposition of integrable equations. The use of integrable equation methods in

the context of monopoles is explained in [Hi3]. This book also describes the hyperKähler
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quotient, another good description of which is given in [GRG].

1.1 Bogomolny-Prasad-Sommerfield monopoles

The Bogomolny equation is

DiΦ = −1

2
εijkFjk, (1.1)

In the simplest case, Di = ∂
∂xi

+ [Ai, ·] is the R3 covariant derivative, Ai is an su2 adjoint

representation gauge potential and Fij = ∂
∂xi

Aj − ∂
∂xj

Ai + [Ai, Aj]. Φ is the Higgs field, an

su2 scalar field. The adjoint gauge action is

Φ → gΦg−1 (1.2)

Ai → gAig
−1 + g

∂g−1

∂xi

where g ∈SU2.

The asymptotic boundary conditions

|Φ| = 1− k

2r
+ O(r−2) (1.3)

∂|Φ|
∂Ω

= O(r−2) (1.4)

|DΦ| = O(r−2) (1.5)

are imposed. r is the radial coordinate, (1.4) refers to angular derivatives and | · | is the

su2 norm: |Φ| =
√
−1

2
traceΦ2. The most striking of these conditions is the first: (1.3),

it gives a topological classification of Φ. Φ is a map from R3 into su2
∼= R3 and since

(1.3) requires |Φ| ∼ 1 for large r, Φ maps the large sphere at large r onto the unit sphere

in su2. The degree of this map is the topological charge, k; the soliton with this charge

is a k-monopole. A k-monopole has energy 4πk and Φ has k zeros, counted with their

multiplicity.

In the 1-monopole case, the explicit solution to the Bogomolny equation is known [PS].

The fields are

Φa =

(
1

tanh r
− 1

r

)
xa

r
(1.6)
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Ai a = −εaij xj

r2

(
1− r

sinh r

)
.

where Φ = Φaτa, Aµ = Aa
µτa and τ a = i

2
σa are the generators of su2. These fields are

spherically symmetric, in that a spatial rotation is a gauge transformation. At the origin

the Higgs field has a zero and the energy has a maximum. The solution may be translated

to give a 1-monopole located at different points in space.

In [JT], it is proved that there are k-monopole solutions which resemble many 1-mono-

poles at great mutual separations. The corpuscular nature of the solutions is apparent in

such well-separated examples. A well-separated k-monopole is composed of k individual

monopoles, each being a source of magnetic and scalar forces. The existence of such

solutions relies on there being no net static forces: the magnetic force cancels with the

scalar force. Historically, the observation by Manton of this cancellation [Ma1] gave the

first clue that there exists continuous spaces of k-monopoles .

In fact, there is a (4k − 1)-dimensional space, Nk, of gauge inequivalent solutions of

topological charge k [We1]. When these monopoles are well-separated, the 4k − 1 param-

eters can be interpreted as 3k parameters giving the positions of the monopoles and a

further k − 1 parameters corresponding to relative phases of the monopoles. It is easier

to understand these phases if the moduli space is extended to the 4k-dimensional oneMk

obtained by adding the gauge orbit of g = e−χΦ. The 1-monopole moduli space, M1 is

then four dimensional and for well-separated k-monopoles the 4k dimensions of Mk are

made up of these four parameters for each of k 1-monopoles.

In the full su2 Yang-Mills-Higgs theory, the monopoles interact and evolve. It is argued

by Manton in [Ma2] that geodesic flow onMk is a good approximation to the low energy

dynamics of the full theory. The natural metric on the moduli space is induced by the

kinetic energy. The calculations of Manton and Samols [MS] provide evidence for the

validity of this approximation. Proof of its validity is given in [St]. The approximation is

very powerful, it reduces the problem of monopole dynamics from nonlinear field theory

to the geometry of a finite-dimensional manifold.

Mk is an asymptotically flat hyperKähler manifold. A hyperKähler manifold is one
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Figure 1.1: A surface of constant energy density for the axially symmetric 2-monopole.

which is Kähler with respect to three complex structures satisfying the quaternion relations.

This is a restrictive structure, restrictive enough for Atiyah and Hitchin to calculate the

metric onM2 [AH].

The nontrivial part of Mk is contained in the geodesic submanifold, M0
k, of k-mono-

pole with given centre of mass and fixed overall phase. The motion of the overall phase

and the centre of mass are trivial.

There is a isometric SO3 action on M0
k given by rotating the k-monopole about this

centre of mass. Finite subgroups of this SO3 action play a crucial role in this thesis.

Not all k-monopole solutions resemble k individual 1-monopoles. For example, the 2-

monopole solution with both zeros of the Higgs field at the origin is axially symmetric and

the energy is distributed around a torus. There is no way of distinguishing two individual

objects in this monopole and the origin, where the two zeros of the Higgs field are located,

is a saddle point of the energy, not a maximum as in the 1-monopole case. Figure 1.1 is a

surface of constant energy density of this 2-monopole.

In this thesis are some further examples of k-monopoles that are not well-separated:

monopoles where it is impossible to distinguish k individual objects. There are even exam-
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ples where there are zeros of negative as well as positive multiplicity. These monopoles are

derived from the Nahm equations.

1.2 The Nahm equations

The Nahm equations are

dT1

dt
= [T2, T3], (1.7)

dT2

dt
= [T3, T1],

dT3

dt
= [T1, T2],

where (T1, T2, T3), the Nahm data, are a triplet of skew-Hermitian k × k matrix functions

of t. They are analytic for t ∈ (−1, 1) and are required to have simple poles at t = −1 and

t = 1. It follows from the equations that the residues at these poles form a representation of

su2 and it is imposed, as a boundary condition, that these representations are irreducible.

The Nahm equations are introduced in [Nah]. It is shown there that a solution to the

Nahm equations give a solution to the Bogomolny equation. In [Hi2] the moduli spaces are

demonstrated to be diffeomorphic. In Sect. 1.5, the relationship of the Nahm equations

with BPS monopoles is discussed. Subsequently, the Nahm data are exploited; first to

construct new hyperKähler manifolds and afterwards to construct new BPS monopoles.

The Nahm equations are integrable. Their Lax formulation is discussed in Sect. 1.3.

It has been noted by Ward [Wa2] that integrable equations are commonly related to the

self-dual Yang-Mills equation. The Nahm equations are, in fact, the dimensional reduction

of these equations to one dimension. Solutions to the self-duality equations which are

independent of three directions satisfy a gauged version of the Nahm equations

dT1

dt
+ [T0, T1] = [T2, T3], (1.8)

dT2

dt
+ [T0, T2] = [T3, T1],

dT3

dt
+ [T0, T3] = [T1, T2],

7



where (T0, T1, T2, T3) is quadruple of skew-Hermitian matrix functions (T0, T1, T2, T3). The

gauge action is

T0 7→ gT0g
−1 − dg

dt
g−1, (1.9)

Ti 7→ gTig
−1,

(1.10)

where g ∈ 0G0 and

0G0 = {g ∈ Cw([−1, 1], U2) : g(−1) = 1, g(1) = 1}. (1.11)

If T1, T2 and T3 are regular for t ∈ (−1, 1) and obey the Nahm boundary condition and T0

is regular for t ∈ [−1, 1] then the Nahm equations can be recovered from (1.8) by gauging

T0 to zero.

The moduli spaces of Nahm data have an isometric SO3 action. This action is the

tensor product of the natural action of SO3 on the (T1, T2, T3) triplet as an R3 vector and

its action on the T1, T2 and T3 as uk matrices. Under the equivalence between k× k Nahm

data and k-monopoles the isometric SO3 action rotates the whole k-monopole. This action

is not triholomorphic; it rotates the Kähler forms.

There is also an isometric R3 action on k×k Nahm data given by translating the trace:

Ti 7→ Ti + iλi1k (1.12)

where λ1, λ2 and λ3 are constants. In the k-monopole space, this action translates the

centre of gravity of the k-monopole. Just as in the monopole case, where attention is

focused onM0
k, it is normal to consider only centred, that is traceless, Nahm data.

1.3 Solving the Nahm equations

A skew-Hermitian 1× 1 matrix function is a pure imaginary function and to solve the

Nahm equations it must be constant. Therefore the data are a triplet of pure imaginary

numbers. The centred data are trivial.
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In the 2× 2 case, the obvious ansatz is

Ti(t) = − i

2
fi(t)σi (1.13)

where σi are the Pauli matrices. Substituting into the Nahm equation gives

df1(t)

dt
= f2(t)f3(t), (1.14)

df2(t)

dt
= f3(t)f1(t),

df3(t)

dt
= f1(t)f2(t).

It is often noted that these are the Euler-Poinsot equations. The Euler-Poinsot equations

for a physical spinning top are

d

dτ
g1 = (λ3 − λ2)g2g3, (1.15)

d

dτ
g2 = (λ1 − λ3)g3g1,

d

dτ
g3 = (λ2 − λ1)g1g2;

the λi are the moments of inertia and τ is time. To recover (1.14) from (1.15) τ is replace

by it. Taking λ1 = 1, λ2 = 0 and λ3 = 2, (1.14) follows by substituting f1 =
√

2g1,

f2 =
√

2g2 and f3 = ig3. Although not the equations for the motion of a physical spinning

top, (1.14) are nonetheless referred to as Euler-Poinsot equations.

The Euler-Poinsot equations are easy to solve. There are two constants:

h = f 2
3 − f 2

1 , (1.16)

p = 2f 2
3 − f 2

1 − f 2
2 .

These are two surfaces in the R3 with coordinates f1, f2 and f3. The solutions to (1.14)

are the curves along which these surfaces intersect. In the physical case, these surfaces

are ellipsoids and so the solutions, which lie at their intersections, have no poles. Here

the surfaces are hyperboloids and the solutions have poles; as is required by the boundary

conditions.

9



The equations are solved by substituting the constants into the differential equations.

Choosing f 2
1 ≤ f 2

2 ≤ f 2
3 the solutions are

f1(t) = ±D cnkD(t + τ)

snkD(t + τ)
, (1.17)

f2(t) = ±D dnkD(t + τ)

snkD(t + τ)
,

f3(t) = ± D

snkD(t + τ)
,

where all the signs are minus or two of them are plus and D =
√

h. The functions snku,

cnku and dnku are the Jacobi elliptic functions.

Elliptic functions are meromorphic biperiodic complex functions. Since the quotient

of the complex plane by their period lattice is a torus, they may also be regarded as

periodic functions over the torus. Nonconstant elliptic function can never be holomorphic.

Furthermore, the sum of residues in any period cell must be zero, so the simplest elliptic

functions have either two simple poles or one double pole. The Jacobi functions are elliptic

functions of the former type, Weierstrass functions of the latter. In calculations involving

elliptic functions, the Jacobi or Weierstrass functions are used.

Any elliptic function can be expressed as a rational function of the Weierstrass function

and its derivative. One way to define the Weierstrass function is to write down the simplest

function with the desired properties: a double pole and two periods, 2ω1 and 2ω2,

℘(z) =
1

z2
+

∑

(n,m)6=(0,0)

[
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

]
. (1.18)

This function satisfies the differential equation

(
d℘

dz

)2

= 4℘3 − g2℘− g3. (1.19)

(℘, ℘′) are (x, y) coordinates on the genus one curve

y2 = 4x3 − g2x− g3. (1.20)

The factors of the cubic are named e1, e2 and e3. If the discriminant of the cubic is positive

these ei are all real and distinct. They are conventionally ordered e1 > e2 > e3. When

10
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sn cn zk

4K
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Figure 1.2: Period rectangles for the Jacobi elliptic functions, the crosses mark poles and

the circles mark zeros.

℘(z) = ei it has vanishing derivative and such points are known to lie on the half periods

ω1, ω2 and ω3 = −ω1 − ω2. Expressing (1.19) as an integral it follows that

ω1 =

∫ ∞

e1

dt√
4t3 − g2t− g3

(1.21)

and

ω3 = −i

∫ e3

∞

dt√
4t3 − g2t− g3

. (1.22)

ω1 is real and ω3 is pure imaginary. The discriminant approaches zero as either e3 ap-

proaches e2 or e2 approaches e1. In the former case the imaginary period becomes infinite

and in the latter case the real period becomes infinite. For negative discriminant, two of

the ei are complex and so the period parallelogram is not rectangular.

The Jacobi functions are called snkz, cnkz and dnkz. They have the appealing property

that snkz and cnkz degenerate to the circular functions sin z and cos z when the imaginary

period is infinite. The parameter k is the elliptic modulus, 0 ≤ k ≤ 1 and the imaginary

period is infinite when k = 0. Figure 1.2 illustrates the location of the poles and zeros of the

Jacobi functions in their period parallelograms. The period parallelograms are rectangular

and the periods depend on K and K ′ where

K =

∫ 1

0

dt√
1− t2

√
1− k2t2

(1.23)
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Figure 1.3: The Jacobi elliptic functions with real argument z.

and

K ′ =

∫ 1

0

dt√
1− t2

√
1− (1− k2)t2

. (1.24)

Figure 1.3 represents the Jacobi functions along a real period. The Jacobi elliptic functions

satisfy the differential equation

d snkz

dz
= cnkz dnkz (1.25)

and the identities

sn2
kz + cn2

kz = 1, (1.26)

k2sn2
kz + dn2

kz = 1.

A classic book concerning elliptic functions is [WW]. [BF] is also useful.

To solve the Nahm equations, it is now necessary to choose τ and h in (1.17) so that

the boundary conditions are satisfied. There is a simple pole at t = −1 if τ = 1 and a

simple pole at t = 1 if D = K(k). The residues at the poles are the standard basis of 2,

the two-dimensional representation of su2.

This solves the Euler-Poinsot equations (1.14) to give 2× 2 Nahm data. The equations

are solvable because of the constants h and p. These constants may be found by inspection.

It is more interesting, however, to realise they may be found using the Lax formulation.

The Nahm equations are equations of spinning top type. That is, they may be rewritten

12



as a Lax equation with a spectral parameter. This treatment of the Nahm equations is

due to Hitchin [Hi1]. From the Nahm equations

d(T1 + iT2)

dt
= [iT3, T1 + iT2]. (1.27)

This means that T1 + iT2 evolves by conjugation. From (1.27), trace[(T1 + iT2)
n] is constant

for any n and so the eigenvalues of T1 + iT2 are constants. In fact, isospectral evolution is

a property of the Lax equation; if

[
d

dt
+ B, A] = 0 (1.28)

then the eigenvalues of A are constant.

In choosing the combination T1 + iT2 in equation (1.27) a choice of direction in the

triplet (T1, T2, T3) is made. There is a whole sphere of such directions and a Lax equation

for each direction. The sphere of directions may be taken as the Riemann sphere P1 with

inhomogeneous coordinate ζ, ζ then parameterizes a family of Lax equations

[
d

dt
− iT3 − i(T1 − iT2)ζ,−i(T1 + iT2) + 2iT3ζ + i(T1 − iT2)ζ

2] = 0. (1.29)

Thus, the eigenvalues of −i(T1 + iT2) + 2iT3ζ + i(T1− iT2)ζ
2 are constants. For k× k data

there will, in general, be k eigenvalues and so, since ζ is a coordinate over a sphere, the

eigenvalues give a k-fold branched covering of the sphere. This is the algebraic curve, P ,

with equation

P (η, ζ) = det(η + i(T1 + iT2)− 2iT3ζ − i(T1 − iT2)ζ
2) = 0. (1.30)

This algebraic curve is independent of t and, since it is a curve of eigenvalues, it is called

a spectral curve.

In the 2× 2 example considered above the spectral curve is

η2 +
1

4
[(f 2

2 − f 2
1 )(ζ4 + 1) + 2(f 2

1 + f 2
2 − 2f 2

3 )ζ2] = 0. (1.31)

The coefficients give the constants h and p above. In fact, by substitution, the curve above

is

η2 +
(1− k2)K(k)2

4
(ζ4 − 2

1 + k2

1− k2
ζ2 + 1) = 0. (1.32)
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It is a double covering of the sphere branched at the four solutions of

ζ4 − 2
1 + k2

1− k2
ζ2 + 1 = 0. (1.33)

These branch points are connected pairwise by branch cuts and the resulting Riemann

surface is a torus.

By inspecting the determinant formula (1.30), it is seen that the spectral curve, P (η, ζ),

for k × k data has the form

ηk + a1(ζ)ηk−1 + . . . + ak−1(ζ)η + ak(ζ) = 0 (1.34)

where ai(ζ) is a degree 2i polynomial in ζ. If the data are centred, a1(ζ) = 0. The curve is

compact and its genus can be calculated from the Riemann-Hurwitz relation. This relates

the genera of two Riemann surfaces M and N between which there is a holomorphic map

f : M → N . If M has genus g, N genus γ and f is a degree n map then

2− 2g = n(2− 2γ)− B (1.35)

where B is the branching number of the map. A branch point is a point common to a

number of sheets. The branching number of a branch point is one less than number of

sheets to which it is common. The branching number of a map is the sum of the branching

numbers of all the branch points. The map (η, ζ) 7→ ζ from the spectral curve (1.34) to the

sphere is degree k and in general has branching points of branching number k − 1 at each

root of ak(ζ), so since the sphere has genus zero, the spectral curve has genus (k − 1)2.

1.4 The eigenvector bundle

There is a distinguished line bundle over the spectral curve, P , given by eigenvectors.

There is an eigenvector of −i(T1 + iT2) + 2iT3ζ + i(T1 − iT2)ζ
2 at each point (η, ζ). This

eigenvector is not independent of t and so the eigenvector line bundle evolves with t. What

is amazing is that this line bundle evolves linearly with t.

Let E(t) be the eigenvector bundle over P (η, ζ). It is proved in [AvanM1, AvanM2]

that

E(t) = E(0)⊗ F (t) (1.36)
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where F (t) is the degree zero line bundle over P defined by the transition function

a(η, ζ, t) = e
tη
ζ (1.37)

on U0 ∩ U∞. U0 and U∞ are the neighbourhoods of the spectral curve lying over U0 and

U∞, the usual ζ 6= 0 and ζ 6=∞ coordinate neighbourhoods on P1.

The space of degree zero line bundles over a Riemann surface Γ, Pic0 Γ, is known. It is

the subject of the classic results of Jacobi and Abel. The space of degree zero line bundles

is isomorphic to the Jacobian variety, Jac Γ:

Pic0 Γ ∼= Jac Γ (1.38)

The Jacobian variety of a Riemann surface of genus g is the g-torus Cg/Λ where Λ is a

lattice calculated by integrating the holomorphic one-forms of the surface over its homology

cycles.

Thus, the evolution E(t) defines a curve in JacP corresponding to F (t). The Jacobian

variety is defined by the spectral curve as a quotient of Cg by a lattice. It derives coordi-

nates from this Cg. The definition of these coordinates is independent of the eigenbundle

flow. Nonetheless, under the natural map into JacP from Pic0 Γ, F (t) is linear.

The linearization of the Nahm equations on the Jacobian variety of its spectral curve

follows from their having a Lax formulation. It is a feature of many of those nonlinear

equations which can be formulated as a Lax equation with a spectral parameter, that they

are linearized on the Jacobian variety of their spectral curve. This is the culmination of

the research of integrable systems which began with the spinning tops of Euler, Lagrange

and Kowalevski. One of the achievements of [Hi2] is the addition of the Nahm equations

to the list of such equations. A excellent book concerning spinning tops is [A].

This linearization explains why it is easy to solve the 2×2 Nahm equations. The spectral

curve has genus one. Therefore, its Jacobian variety is a one-torus. The solutions to the

2 × 2 Nahm equations are linear on this Jacobian variety and so the complex coordinate

on the Jacobian variety can be identified with the variable t for the Nahm equations if

this variable is regarded as complex rather than real. With t complex, the Nahm data
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are meromorphic matrix functions with simple poles and so the solutions to the Nahm

equations are meromorphic functions over the Jacobian variety. The Jacobian variety is

a torus and the meromorphic functions over a torus are elliptic function. Therefore, the

solutions to the 2 × 2 Nahm equations are elliptic. Thus, the 2 × 2 Nahm equations are

integrable, two constants are given by the spectral curve and the solutions are elliptic

functions.

1.5 Spectral curves, monopoles and Nahm data

There is also a spectral curve associated with monopoles and it is introduced in [Hi1].

In [Hi2] it is proved that the monopole spectral curve and the Nahm data spectral curve

are the same. A useful account is given in [Hi3].

The space of oriented lines in R3 is TP1, the tangent bundle to P1. A tangent has

coordinate η d
dζ

and (η, ζ) are coordinates on TP1. The corresponding line has direction

given by ζ and pierces a perpendicular complex plane through the origin at η.

A line bundle is defined over TP1 by the decaying solution to the Hitchin equation. Let

s be the distance along some line u. The Hitchin equation is the one-dimensional Dirac

equation along that line:

(Du − iΦ)v(s) = 0, (1.39)

where, Du denotes the covariant derivative along u. The space of solutions along the

line is two dimensional so, by considering all lines, a rank two vector bundle E is defined

over TP1. The asymptotic boundary conditions on the monopole fields (Ai, Φ) allow this

equation to be solved asymptotically. In a suitable gauge, the Hitchin equation is


 d

ds
+ (1− k

2s
)


 −1 0

0 1


 + O(s−2)


v(s) = 0 (1.40)

for large s. This has a decaying solution

v(s) = e−ss
k
2


 0

1


 (1.41)
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and so there is a one-dimensional subspace of the solutions along the line which decay for

s→∞. This distinguishes a holomorphic line subbundle L+ ⊂ E. In the same way, there

is a holomorphic line bundle, L− ⊂ E, of solutions which decay s → −∞. The curve in

TP1 along which these line bundles coincide is the spectral curve of the monopole. It is

the curve of lines along which the Hitchin equation has L2(−∞,∞) solutions.

The construction of the monopole fields from their Nahm data also requires the solu-

tions of a Dirac equation. The process of constructing monopole fields from Nahm data

is known as the Atiyah-Drinfeld-Hitchin-Manin-Nahm (ADHMN) construction. It is so

named because it is Nahm’s extention to monopoles of the Atiyah-Drinfeld-Hitchin-Manin

construction of self-dual Yang-Mills instantons [Nah, ADHM]. The Dirac equation to be

solved is consequently known as the ADHMN equation. It is the ordinary differential

equation

[12k
d

dt
+

1

2
(1k ⊗ xjσj + iTj ⊗ σj)]v(t) = 0 (1.42)

for the complex 2k-vector v(t). (x1, x2, x3) is the point in space at which the mono-

pole fields are being calculated. The solutions of (1.42) are required to be normalizable

with respect to the inner product

〈v1,v2〉 =

∫ 1

−1

v
†
1v2 dt. (1.43)

It can be shown that the space of normalizable solutions to (1.42) has two complex di-

mensions. If v̂1, v̂2 is an orthonormal basis for this space then the Higgs field Φ is given

by

Φ =
i

2


 〈tv̂1, v̂1〉 〈tv̂1, v̂2〉
〈tv̂2, v̂1〉 〈tv̂2, v̂2〉


 (1.44)

with a similar expression for the gauge potential.

The Hitchin equation and the ADHMN equations are similar. In fact, mirroring the

construction of the monopole fields from the Nahm data is a construction, via the Hitchin

equation, of Nahm data from the monopole fields. This is discussed by Nahm in [Nah]. It

is also discussed by Corrigan and Goddard in [CG] where they refer to the phenomenon as

reciprocity.
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The spectral curve of a 1-monopole located at (x1, x2, x3) is

η − (x1 + ix2) + 2x3ζ + (x1 − ix2)ζ
2 = 0. (1.45)

This spectral curve corresponds to all lines through the point (x1, x2, x3), the centre of the

1-monopole. It is known as the star.

The precise conditions that an algebraic curve in TP1 must satisfy if it is a spectral

curve are given in [Hi2]. The most obvious condition is reality. There is a real structure on

TP1 given by lifting the antipodal map on P1 to the tangent bundle. In (η, ζ) coordinates

it is

τ : (η, ζ) 7→ (
−η̄

ζ̄2
,
−1

ζ̄
) (1.46)

and it is equivalent in the space of oriented lines in R3 to reversing the line orientation. If

the Hitchin equation on an oriented line has L2(−∞,∞) solutions, it has L2(−∞,∞) on

the same line with the other orientation, this means that the spectral curve is invariant

under the reality transformation. As a consequence, the ai in (1.34) satisfy

ai(ζ) = (−1)iζ2iai(−
1

ζ
). (1.47)

A general real algebraic curve of the form (1.34) has (k + 1)2 − 1 degrees of freedom.

However, the requirement that L+ = L− on the spectral curve results in (k−1)2 constraints;

reducing the number of degrees of freedom to 4k − 1. There are further conditions on the

spectral curve related to the existence of the eigenbundle. These conditions are to be

found in [Hi2]. In [Hu1] these conditions are applied to a general k = 2 algebraic curve to

calculate the 2-monopole spectral curve. It is, of course, the Lax curve (1.32).

1.6 Other gauge groups

BPS monopoles are not unique to SU2 gauge theory. For SUn monopoles the Higgs

field Φ is an sun valued scalar field and Ai is an sun gauge potential. There is an SUn

gauge action on these fields, broken by the asymptotic Higgs field. If SUn is broken to the

maximal torus Un−1
1 the Higgs field at infinity is required to lie in the gauge orbit of

Φ∞ = idiag(t1, t2, . . . , tn). (1.48)
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By convention t1 < t2 < . . . < tn and, since Φ is traceless, t1 + t2 + . . . + tn = 0. Because

of the asymptotic condition on Φ, it gives a map from the large sphere at infinity into the

quotient space

orbitSUn
Φ∞ = SUn/Un−1

1 . (1.49)

Since π2(SUn/Un−1
1 ) = Zn−1 the moduli space of monopoles is divided, topologically, into

sectors labelled by n − 1 topological charges, ki. The maximal torus of SUn is generated

by the Cartan space and the matrix Φ∞ defines a direction in this Cartan space. This

direction picks out a unique set of simple roots in the Cartan space: those whose inner

product with Φ∞ is positive. Each U1 in the maximal torus is generated by one of these

simple roots. The ki are then ordered by the requirement that adjacent ki’s correspond

to nonorthogonal roots. A monopole with topological charge (k1, k2, . . . , kn−1) is called a

(k1, k2, . . . , kn−1)-monopole.

In this section the Nahm data corresponding to a (k1, k2, . . . , kn−1)-monopole are ex-

plained. The Nahm description of such monopoles is very useful, it encapsulates how SUn

monopoles differ for different n. This, however, is not discussed in this thesis. The main

use made of the general SUn Nahm formulation is the construction, in Sect. 1.7, of new

hyperKähler manifolds. In that section the known 2× 2 data is reemployed in the context

of SU3 and SU4 data to investigate two families of hyperKähler manifolds.

The Nahm data corresponding to a (k1, k2, . . . , kn−1)-monopole are a triplet of skew-

Hermitian matrix functions defined over the interval [t1, tn]. The ti’s subdivide the interval

into n − 1 abutting subintervals. For a (k1, k2, . . . , kn−1)-monopole a skyline diagram is

drawn: a step function over the interval whose height on the i’th subinterval is ki. For

example, a (3, 1, 2)-monopole in an SU4 theory has diagram

�

�

�

� �

�

�

�
�

�
��� ��� �
	 �
� �

(1.50)

The Nahm triplet is now a triplet of square matrix functions of t of different size over

different subintervals. The size of the Nahm matrices in a subinterval is given by the height
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of the skyline in that interval. The matrices must satisfy the Nahm equations (1.7) in each

subinterval.

The boundary conditions now relate the Nahm matrices in abutting subintervals. For

the purpose of explaining these conditions let us consider the skyline diagram

�

�

�

�
�����

�	�

��


�

(1.51)

The skyline is k1 high to the left of τ and k2 < k1 high to the right of it. Thus, the Nahm

triplet, (T1, T2, T3), is a triplet of k1 × k1 matrices over the left interval and of k2 × k2

matrices over the right interval. As t approaches τ from the left, it is required that

Ti(s) =


 Ri/s + O(1) O(s(m−1)/2)

O(s(m−1)/2) T ′
i + O(s)


 (1.52)

where s = τ − t, m = k1 − k2 and the k2 × k2 matrix T ′
i is the nonsingular limit of the

right interval Nahm data at t = τ . The m×m residue matrices Ri in (1.52) must form the

irreducible m-dimensional representation of su2. Since the one-dimensional representation

is trivial, there is no singularity when m = 1. When k1 is less than k2 the conditions are

almost the same. Again there is a pole with residue matrices forming the m = (k2 − k1)-

dimensional representation of su2 and the k1× k1 data are submatrices of the k2× k2 data

at the boundary. The situation when k1 = k2 is very different and is not discussed in this

thesis.

In the SU2 case the skyline diagram is just




�

�




�

�
�� �

(1.53)

20



and the boundary conditions are as described in Sect. 1.2.

When some of the ti’s in the asymptotic Higgs field are coincident, the residual gauge

symmetry is enhanced. If two coincide, one U1 factor is replaced by an SU2 factor. If

three coincide, two U1’s are lost and an SU3 gained. Generally, the unbroken group is

Ur
1×K where K is a rank n− r − 1 semisimple Lie group. Since π2(SUn/(Ur

1 × K)) = Zr,

monopole solutions in theories with nonAbelian residual symmetries have fewer topological

charges. However, the monopole solutions still have n − 1 integer labels. Some of these

integers are the usual topological charges. The rest are what are known as holomorphic

charges.

The role of the holomorphic charges is subtle. If two ti’s are coincident, there is a zero

thickness subinterval in the Nahm interval. The boundary conditions for Nahm data in this

situation can be described in terms of those explained above, by formally imagining the

zero thickness subinterval as the zero thickness limit of a subinterval of finite thickness. The

Nahm data on this subinterval become irrelevant in the limit, but the height of the skyline

on vanishing subintervals affects the matching condition between the Nahm matrices over

the subintervals on either side.

An example is SU3 broken to U2
1. A (2, 1)-monopole has skyline

�
�
� �

���
���	� 


(1.54)

The Nahm data are 2 × 2 in the left interval and 1 × 1 in the right interval. Thus, the

right interval triplet is a triplet of imaginary numbers. These numbers are i times the

Cartesian coordinates of the ( ,1) part of the (2, 1)-monopole. The boundary conditions

imply that the 2×2 data are nonsingular at the boundary, t = τ , between the two intervals

and, further, that their entries Ti(τ)
2,2

are the 1× 1 data. The 2× 2 data are singular on

the left boundary of the interval and the residues there form an irreducible representation

of su2. Letting the right hand interval vanish, an SU3 monopole with topological charge

two and holomorphic charge one is obtained. Holomorphic charges are distinguished from

topological charges by square bracketing them. Thus, this monopole is a (2, [1])-monopole
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and it has skyline

��� �������	�




�
�



(1.55)

The Nahm data are 2× 2 matrices with a pole on the left boundary but not on the right

one.

In contrast, a (2, 0)-monopole has skyline

��� ��� �	�

�

�
�

� (1.56)

The Nahm data are 2× 2 matrices over the left hand subinterval and have poles at t1 and

t2. There are no data over the right hand subinterval. These data are identical to SU2

2-monopole data and correspond to the embedding of an SU2 2-monopole in SU3. The

length of the right hand subinterval does not affect the Nahm data. There is a pole at

both t1 and t2 irrespective of whether t2 = t3 or not. If t2 = t3 the Nahm data correspond

to a (2, [0])-monopole.

These examples demonstrate how the holomorphic charges determine the boundary

conditions and how these boundary conditions can be derived by imagining the nonAbelian

case as the zero interval thickness limit of the Abelian case. It should be noted that different

holomorphic charges do not necessarily correspond to different monopoles or to different

Nahm data. For example, (3, [1])-monopoles are also (3, [2])-monopoles. This ambiguity is

discussed, for example, in [We2].

1.7 New hyperKähler manifolds

New hyperKähler manifolds can be constructed using SUn Nahm data. In this section,

the one-parameter family of hyperKähler manifolds due to Dancer is shown to be an infinite

mass limit of the moduli space of (2, 1)-monopoles. A new family of fixed monopole spaces
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is also constructed. They are the moduli spaces of (1, 2, 1)-monopoles, in the infinite mass

limit of the two distinct monopoles.

It is imagined that many new hyperKähler manifolds might be constructed by fixing

monopole masses. Because the Nahm equations for 2 × 2 data are known, it is possible

to demonstrate nonsingularity in the (2, 1) case and in the (1, 2, 1) case for generic fixed

monopole positions. Without general solutions of the Nahm equations, only the (2, 1) and

(1, 2, 1) cases are amenable to this investigation.

This section is divided into subsections. In Subsect. 1.7.1 Dancer’s one-parameter family

of hyperKähler manifolds is discussed. They are seen to be fixed monopole spaces with

one fixed monopole. Spaces with two fixed monopoles are introduced in Subsect. 1.7.2 and

their nonsingularity is demonstrated in Subsect. 1.7.3. Other fixed monopole spaces are

described in Subsect. 1.7.4. The discussion of fixed monopole spaces concludes in Subsect.

1.7.5 with some remarks about the applications of the new hyperKähler manifolds to

three-dimensional supersymmetric theories. Subsection 1.7.6 is an aside concerning SU4

monopoles.

1.7.1 Dancer’s family of hyperKähler manifolds

In [Da2] the moduli space of centred (2, [1])-monopoles is constructed. They have

the skyline diagram (1.55). The moduli space, M0
(2,[1]), is eight dimensional. The Nahm

data for such monopoles are a triplet of 2 × 2 traceless skew-Hermitian matrix functions

over the interval [−2, 1]. There is a simple pole at t = −2 and the residues there form

the irreducible two-dimensional representation of su2. The space of such Nahm triplets,

N(2,[1]), is five dimensional. The whole ofM0
(2,[1]) is generated by the action of SU2 on these

Nahm data. To describe this group action, the gauged version of the Nahm equations (1.8)

must be used.

A group action is defined on the space of (2, [1]) Nahm data. The group

0G = {g ∈ Cw([−2, 1], U2) : g(−2) = 1} (1.57)
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contains the gauge action

0G0 = {g ∈ Cw([−2, 1], U2) : g(−2) = g(1) = 1} (1.58)

as a subgroup. The action of g ∈ 0G on (T0, T1, T2, T3) is defined as in the SU2 case (1.9).

The moduli space of uncentred Nahm data, M(2,[1]), is the space of gauge inequivalent

data. However, U2 =0G/0G0 and, so, a U2 action on the data is given by g ∈0G acting as in

(1.9). A hyperKähler quotient by the centre of this U2 onM(2,[1]) centres the Nahm data,

givingM0
(2,[1]). The remaining SU2 action can be fixed by setting T0 to zero, reducing (1.8)

to (1.7) andM0
(2,[1]) to N(2,[1]).

The SU2 action on N(2,[1]) is triholomorphic and isometric. This means that there is an

induced moment map, µ, fromM0
(2,[1]) to R3 formed by the action of a U1 subgroup of SU2.

Dancer’s family of hyperKähler manifolds is the family of hyperKähler four-manifolds

M(λ) = µ−1(λ)/U1, (1.59)

where λ ∈ R3. The SO3 action on M0
(2,[1]) is not an isometry of M(λ), rather, it acts on

λ to give an isometry between M(λ) and M(Rλ) where R is an SO3 matrix. M(0) is a

double cover of the Atiyah-Hitchin manifold.

The hyperKähler manifolds M(λ) are hyperKähler quotients of a monopole moduli

space. It is now shown that they are the infinite mass limit of another monopole space.

The moment map µ is known explicitly. If the U1 subgroup is the subgroup which fixes iσ3

when SU2 acts on su2 in the adjoint representation, the moment map µ : M0
(2,[1]) → R3

given by this U1 action is

µ : (T0, T1, T2, T3) 7→ (−trace(T1(1)iσ3),−trace(T2(1)iσ3),−trace(T3(1)iσ3)). (1.60)

The level set µ−1(λ) consists of Nahm data whose entries Ti(1)
2,2

are iλi/2 at t = 1. For

(2, 1)-monopoles, (1.54), the data in the right-hand interval are given by the Ti(1)
2,2

, that

is, the (2, 2) entries from the Nahm data on the left-hand interval. Thus, the hyperKähler

manifolds M(λ) are the moduli spaces of (2, 1)-monopoles with the ( , 1)-monopole fixed.

The ( , 1)-monopole can be fixed by taking its infinite mass limit. The monopole mass is
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proportional to the length of the corresponding interval, so this limit is

�

�

(1.61)

The vector λ is now related to the position of the ( , 1)-monopole: the monopole whose

position is fixed. When the position of the ( , 1)-monopole is fixed in the centre, the relative

metric of the (2, )-monopole is Atiyah-Hitchin.

An advantage of this description of M(λ) is that its asymptotic behaviour may be

calculated using the methods of [Ma2, GM2, LWY2]. That is, by approximating the

monopoles by point particles and calculating their long range interactions. This yields a

purely kinetic Lagrangian for the motion of the well-separated monopoles and, hence, an

asymptotic metric. This metric is

ds2 = gijdxi · dxj + g−1
ij (dχi + Wik · dxk)(dχj + Wjl · dxl), (1.62)

where,

gjj = mj −
∑

i6=j

αij

rij

, (1.63)

gij =
αij

rij
, (i 6= j)

Wjj = −
∑

i6=j

wij,

Wij = wij, (i 6= j)

and xi, χi and mj are the spatial coordinates, phases and masses of the monopoles; these

are all well defined in the point particle approximation. A Dirac potential w(r) satisfies

∇
r
×w = − r

r3
. (1.64)

In (1.63) rij = |xi − xj| and wij is the corresponding Dirac potential. If the i and j

monopoles have the same U1 charge then αij = 1 and, if they correspond to adjacent U1’s,

αij = −1/2, otherwise it is zero.
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Figure 1.4: Two unfixed monopoles and a fixed one. The unfixed monopoles are the solid

dots.

For (2, 1)-monopoles the mass of the two (2, )-monopoles, is chosen to be one and that

of the ( , 1)-monopole to be m. Then, in the notation of Fig. 1.4,

gij =




1− 1
r

+ 1
2r1

1
r

− 1
2r1

1
r

1− 1
r

+ 1
2r2

− 1
2r2

− 1
2r1

− 1
2r2

m + 1
2r1

+ 1
2r2


 . (1.65)

In the (r, 1
2
(x1 + x2),x3 − 1

2
(x1 + x2)) basis this becomes

g′
ij =




1
2
− 1

r
+ 1

8r1
+ 1

8r2
0 1

4r2
− 1

4r1

0 m + 2 m

1
4r2

− 1
4r1

m m + 1
2r1

+ 1
2r2


 . (1.66)

Thus, taking the infinite mass limit, the asymptotic metric on M(λ) is

ds2 = V1dr · dr + V −1
2 (dχ + W · dr)2, (1.67)

V1 =
1

2
− 1

r
+

1

8r1

+
1

8r2

,

V2 = 1− 1

r
+

1− 4r1r2

8r1r2 + 2r1 + 2r2

,

W = −w +
1

8
w1 +

1

8
w2.

This metric is singular as r → 0. It is only valid for large r.

The asymptotic metric for M(0) is found by placing the fixed monopole at the centre

of mass of the two unfixed monopoles and, thus, by substituting r1 = r2 = r/2 and

w1 = w2 = 2w in (1.67). Making these substitutions reduces (1.67) to the asymptotic

form of the Atiyah-Hitchin metric.
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1.7.2 A new family of hyperKähler manifolds

Another advantage of this description is that it immediately suggests the new family of

four-dimensional hyperKähler manifolds, N(λ, µ). M(λ) is a fixed monopole space derived

from the moduli space of charge (2, 1) SU3 monopoles. This suggests that a new family of

hyperKähler manifolds could be constructed by fixing monopoles in the moduli space of

charge (1, 2, 1) SU4 monopoles. A (1, 2, 1)-monopole has skyline

��� ��� ��� ��� 	

(1.68)

The corresponding Nahm data are 2 × 2 matrices in the middle subinterval and 1 × 1

matrices in the left and right subintervals. The Nahm data in the left subinterval are equal

to the entries Ti(t2)2,2
of the 2× 2 data. The Nahm data in the right subinterval are equal

to the entries Ti(t3)2,2
. All the Nahm data are regular.

The limit where the subintervals [t1, t2] and [t3, t4] become infinitely long gives the

(1, 2, 1) fixed monopole spaces:


 �

�
(1.69)

They are labelled by two vectors, λ and µ, the positions of the two fixed monopoles: the

(1, , )-monopole and the ( , , 1)-monopole. These spaces are denoted N(λ, µ). The SO3

action on the charge (1, 2, 1) moduli space is isometric and rotates the two vectors λ and

µ. In the infinite mass limit of the (1, , )-monopole and the ( , , 1)-monopole, the action

of some R ∈SO3 gives an isomorphism between N(λ, µ) and N(Rλ, Rµ). Thus, N(λ, µ)

is a three-parameter family of hyperKähler manifolds. If λ and µ are parallel, then a U1

subgroup of the SO3 action fixes N(λ, µ) and so N(λ, µ) has a U1 isometry.

Using the same methods as for the Dancer family, the asymptotic form of the N(λ, µ)
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Figure 1.5: Two unfixed monopoles and two fixed ones. The unfixed monopole are the

solid dots.

metric can be calculated. It is

ds2 = V1dr · dr + V −1
2 (dχ + W · dr)2, (1.70)

V1 =
1

2
− 1

r
+

1

8r11

+
1

8r12

+
1

8r21

+
1

8r22

,

V2 = 1− 1

r
+

1

2

r11r21 + r11r22 + r12r21 + r12r22 − 4r11r12r21r22

4r11r12r21r22 + r11r12r21 + r11r12r22 + r11r21r22 + r12r21r22

,

W = −w +
1

8
w11 +

1

8
w12 +

1

8
w21 +

1

8
w22,

where everything is defined as before; except that now, there are two fixed monopoles and

the distances from the two ( , 2, )-monopoles to the first of these have been denoted by

r11 and r21 and the distances to the second by r12 and r22. This notation is illustrated in

Fig. 1.5. Examining the asymptotic formula, it is interesting to see how flat the N(λ, µ)

metrics are. All the metrics are flat up to the second order in 1/r.

1.7.3 Nonsingularity of the new hyperKähler manifolds

It is not clear, however, that the (1, 2, 1)-moduli space remains nonsingular as the

masses of the (1, , )-monopole and the ( , , 1)-monopole become infinite. Dancer’s fam-

ily, M(λ), is known to be nonsingular because it can be constructed using a hyperKähler

quotient. In imitation of this, N(λ, µ) is constructed in this section by hyperKähler quo-

tient of the moduli space of ([1], 2, [1])-monopoles. These monopoles are SU4 monopoles of
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topological charge two with the SU4 broken to SU2×U1×SU2. The skyline diagram is

������� ����� �

(1.71)

The Nahm data are 2 × 2 matrices analytic over the whole interval [2, 2]. There are two

commuting SU2 actions, one at each boundary. These data correspond to ([1], 2, [1])-mono-

poles. The moduli space of ([1], 2, [1])-monopoles is used to construct N(λ, µ) in the same

way as the moduli space of (2, [1])-monopole is used to construct M(λ). It is found that

the manifold N(λ, µ) is free of singularities as long as λ 6= µ.

The charge ([1],2,[1]) Nahm data are quadruplets (T0, T1, T2, T3) satisfying the Nahm

equations (1.8) and acted on by the gauge group

0G0 = {g ∈ Cw([−2, 2], U2) : g(−2) = g(2) = 1}. (1.72)

The two larger groups,

0G = {g ∈ Cw([−2, 2], U2) : g(−2) = 1}, (1.73)

G0 = {g ∈ Cw([−2, 2], U2) : g(2) = 1} (1.74)

are defined. These are subgroups of G = {g ∈ Cw([−2, 2], U2)}.
Two U2 actions are given by 0G/0G0 and G0/0G0. These actions commute. The whole

U2×U2 action is the G/0G0 action. The centre is U1×U1. The Nahm data are fixed

under the central element represented by the constant function g(t) = eiθ12. The element

represented by g(t) = eiθt12 sends (T0, T1, T2, T3) to (T0 − iθ12, T1, T2, T3) and generates

the vector field (−i12, 0, 0, 0). The hyperKähler quotient by this action centres the Nahm

data. This space of centred data, M0
([1],2,[1]), is twelve dimensional. It has an isometric

triholomorphic SU2×SU2 action. There is also an SO3 action, which rotates (T1, T2, T3) as

a three-vector and commutes with the SU2×SU2 action.

A U1×U1 subgroup of the SU2×SU2 is represented by the elements

α(t) = e
iθ
4

(t+2)σ3 , β(t) = e
iθ
4

(2−t)σ3 . (1.75)

29



The moment map, µ : N 0
([1],2,[1]) → R3 ×R3, for the action of this subgroup is

µ : (T0, T1, T2, T3) 7→ (λ, µ) (1.76)

where

λ = (−trace(T1(−2)iσ3),−trace(T2(−2)iσ3),−trace(T3(−2)iσ3)) (1.77)

and

µ = (−trace(T1(2)iσ3),−trace(T2(2)iσ3),−trace(T3(2)iσ3)). (1.78)

By the same argument as before N 0
([1],2,[1]) reduces to N(λ, µ) under the hyperKähler quo-

tient:

N(λ, µ) = µ−1(λ, µ)/U1 × U1 (1.79)

The condition that λ and µ must satisfy, in order for the U1×U1 action to be free, are

now needed. These are the conditions for the nonsingularity of the N(λ, µ).

To apply these conditions, it is necessary to solve the Nahm equations. Using the G
action, T0 is gauged to zero. This leaves an eight-dimensional space acted on by constant

elements of G and by the SO3 action. trace(T1T2), trace(T2T3) and trace(T3T1) are inde-

pendent of t. By acting SO3 they can be set to zero. This means that if the Ti are written

as

Ti = − i

2
fini · σ, (1.80)

where the ni are constant orthonormal vectors. The fi’s satisfy the Euler-Poinsot equations

(1.14). The SO3 action are completely fixed by requiring that

f 2
1 ≤ f 2

2 ≤ f 2
3 . (1.81)

The fi are then those given in (1.17)

The remaining group action is that of constant elements of G. It is fixed by setting

n1 = (1, 0, 0), n2 = (0, 1, 0) and n3 = (0, 0, 1). The resulting subspace of the moduli space

N 0
([1],2,[1]) is called N 3. Since the SO3 action on N 0

([1],2,[1]) is not free, N 3 is not a manifold.

In the SU2 case, the boundary conditions fixed the constants τ and D in (1.17). Here the

only constraints are that the poles do not fall in the [−2, 2] interval. This requires that
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τ > 2 and D(τ +2) < 2K(k). Further solutions are found by changing the sign of all three

fi’s and sending t to −t. The analyticity requirements on these further solutions are that

τ < 2 and D(τ + 2) < 2K(k). This exhausts all the solutions consistent with the various

conditions which have been imposed.

The action of α(t) and β(t) is given by (1.75). A fixed point of α(t) is diagonal at

t = 2 and so for α(t) to have a fixed point in N 3 it is necessary and sufficient that

f1(2) = f2(2) = 0. This only occurs if k = 1 and τ = ∞. The solutions (1.17) are

then f1(t) = 0, f2(t) = 0 and f3(t) = D and the hyperKähler quotient gives the space

N((0, 0, D), (0, 0, D)). This means N(λ, µ) with λ = µ = (0, 0, D) may have a singularity.

A point in N 3 with f1(t) = 0, f2(t) = 0 is also a fixed point of β(t) and these are all the

fixed points of β(t) in N3.

To find all the fixed points of the U1×U1 action the whole ofN 0
([1],2,[1]) must be examined

and those points whose data are diagonal at either end found. Acting on the t = 2 data

with a general element of U2 demonstrates that the only data which are diagonal at t = 2

have f1(t) = 0 and f2(t) = 0. The corresponding quotient space has both the fixed

monopoles lying on the x3-axis. In N 0
([1],2,[1]) the only fixed points are those for which the

fixed monopoles are collinear with the origin. This means that the only potentially singular

N(λ, µ) manifolds have λ parallel to µ.

The manifold N(0, 0) is singular. This is in contrast with M(0) which is a double cover

of the Atiyah-Hitchin manifold. The N(λ, µ) spaces are not deformations of a smooth SO3

isometric hyperKähler manifold.

1.7.4 Other fixed monopole spaces

Following the example of M(λ) and N(λ, µ), it is natural to ask whether further non-

singular fixed monopole spaces might be constructed by fixing larger numbers of monopoles.

For example, a large class of four-dimensional hyperKähler manifolds might be derived

from the (k1, 2, k2)-monopole moduli spaces. One might conjecture that, as long as the

(k1, , )-monopoles and the ( , , k2)-monopoles are not fixed in collinear positions, new

multi-parameter families of four-dimensional hyperKähler manifolds could result.
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More complicated mixtures of fixed and unfixed monopoles could be used to give fixed

monopole spaces of dimensions higher than four. Fixed charges are distinguished from

other charges by enclosing them in curly brackets. It could be conjectured that for r > 1

the ({k1}, l1, l2, . . . , lr, {k2}) spaces are nonsingular when the (k1, , . . . , , )-monopoles and

the ( , , . . . , , k2)-monopoles are each fixed so they are not collinear with monopoles of the

same type.

The asymptotic metrics can always be constructed for fixed monopole spaces using

the point monopole methods of [Ma3, GM2, LWY2]. Generally, these asymptotic fixed

monopole metrics are singular. This is not the case for the ({k}, 1) space. In the limit of

infinite (k, )-monopole mass the (k, 1)-monopole asymptotic metric is the k centre multi-

Taub-NUT metric of Hawking [Ha]. The positions of the k centres are the k fixed mono-

pole positions. Since the multi-Taub-NUT metric is generically nonsingular and is the

same asymptotically as the (k, 1) metric, it seems likely that they are the same everywhere.

Certainly, the (1, 1)-monopole metric is known explicitly [C, GL, LWY1] and the ({1}, 1)

metric is Taub-NUT. The (1, 1, 1) metric is also known [LWY2, Mu] and the infinite mass

limit ({1}, 1, {1}) is two centre multi-Taub-NUT.

Mixtures of fixed, topological and holomorphic charges might also be considered. An

example is the eight-dimensional space ({1}, 2, [1]):

�

(1.82)

It is an interesting space, it has a triholomorphic SU2 isometry and an isometric U1 action

which rotates the complex structures.

1.7.5 Applications

The N(λ, µ) are gravitational instantons. Gravitational instantons are asymptotically

flat solutions of the vacuum Einstein equations. All asymptotically flat four-dimensional
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Figure 1.6: The threebrane and fivebrane configuration. An X marks an extended direction.

λ2

λ3

λ1

λ4

λ5

λ6

t3t2t1 t4

Figure 1.7: A typical configuration. The horizontal lines are threebranes and the vertical

lines are fivebranes.

hyperKähler manifolds are gravitational instantons. As noted earlier, N(λ, µ) rapidly

approaches flat space.

Fixed monopole spaces are relevant to (2+1)-dimensional quantum field theories. In

a celebrated recent paper Hanany and Witten [HW] propose a correspondence between

three-dimensional supersymmetric gauge theories and moduli spaces of magnetic mono-

poles. Hanany and Witten consider the theory of type IIB superstrings. In this theory

there are threebranes and fivebranes, that is, objects extended in, respectively, three and

five spatial dimensions. A number of fivebranes are placed so that they are extended in the

x0 and x1 to x5 directions, are at the origin in the x7 to x9 directions and are at positions

ti along the x6 directions. Threebranes are placed so that they are extended in the x0, x1

and x2 directions and stretch between fivebranes in the x6 direction. Like the fivebranes

they are at the origin in the x7 to x9 directions. In the x3 to x5 directions each threebrane

is at some position λi. Figure 1.6 recapitulates this assignment. Figure 1.7 illustrates a

typical configuration.
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In their paper Hanany and Witten consider a given brane configuration in two different

ways. The ends of the threebranes in the fivebranes are infinitely extended in two spatial

directions and positioned at λi in the remaining three spatial dimensions. It is argued that

the ends of the threebranes in the fivebranes are BPS monopoles in their three codimen-

sions. In fact, it is argued that the theory of the threebranes as objects is a BPS monopole

theory. For the configuration pictured in Fig. 1.7, for example, this BPS monopole theory

has skyline diagram

��������� ���
(1.83)

There is also a theory in the threebranes themselves. It is argued by Hanany and

Witten that, in the x0, x1 and x2 directions of the threebranes, there is a (2+1)-dimensional

N = 4 supersymmetric quantum field theory. The matter content of this field theory can

be deduced from the precise configuration of branes. Thus, a given brane configuration

contains a BPS monopole configuration and a (2+1)-dimensional supersymmetric quantum

field theory. This pairing is conjectured to give a correspondence between BPS moduli

spaces and the moduli spaces of supersymmetric theories. It is thought that, along the x6

direction the theory reduces to the Nahm equations [Dia].

In the language of [HW], the fixed monopole spaces correspond to brane configurations

in which some of the threebranes are infinitely extended in the direction along which the

fivebranes are separated. Thus, N(λ, µ) corresponds to the configuration of Fig. 1.8. The

quantum field theories in this case have hypermultiplets of masses λ and µ. The Dancer

space M(λ) corresponds to Fig. 1.9 and to quantum field theories with hypermultiplets of

mass λ.

The brane configurations of Hanany and Witten are not the only evidence for the corre-

spondences thereby constructed. (2+1)-dimensional N = 4 supersymmetric quantum field

theories are studied by compactifying (3+1)-dimensional N = 2 supersymmetric quantum

field theories; the theories which are parametrized by the Seiberg-Witten curves. In [AH]

the Atiyah-Hitchin manifold is described as the quotient by (x, y, z) → (−x,−y, z) of the
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Figure 1.8: The fivebrane and threebrane configuration equivalent to N(λ, µ).
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Figure 1.9: The fivebrane and threebrane configuration equivalent to M(λ).

surface

x2 − zy2 = 1, (1.84)

in C3. In [SW] this curve is derived from the Seiberg-Witten curve by compactifying a suit-

able (3+1)-dimensional theory to give a (2+1)-dimensional theory with no hypermultiplets.

M(λ) also has a complex surface description [Da3] and in [SW] the same compactification

procedure shows that this surface is the surface of theories with one hypermultiplet of mass

λ. The reinterpretation of M(λ) as a fixed monopole moduli space gives an explanation

of this, in the spirit of [HW].
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1.7.6 A note on ([1], 2, [1])-monopoles

The moduli space of ([1], 2, [1])-monopoles is used to prove the nonsingularity of

N(λ, µ). The discussion of it is also be useful in studying ([1], 2, [1])-monopoles per se.

The metric on the moduli space is unknown, but could be calculated using methods similar

to those used to calculate the (2, [1])-monopole metric [Da1, I]. In fact, since [Ho] appeared

Lee and Lu have calculated the metric on a specific submanifold of the ([1], 2, [1]) moduli

space [LL].

The Coxeter-Dynkin diagram for su4 is

����� ����� �����
�� �� �� (1.85)

and there are three simple roots, ~α, ~β and ~γ. If the roots are ~α = (1, 0, 0), ~β = (−1
2
,−1

2
, 1√

2
)

and ~γ = (0, 1, 0) then the theory with residual symmetry SU2×U1×SU2 has Φ∞ along the

x3-axis. Some ([1], 2, [1])-monopoles have a very simple form. There is an embedding of su2

in su4 corresponding to any root. If a SU2 1-monopole is embedded in su4 along the root

~α + ~β it is a ([1], 1, [0])-monopole. Similarly, a SU2 1-monopole embedded along the root

~γ + ~β is a ([0], 1, [1])-monopole. Since ~α+ ~β and ~γ + ~β are orthogonal, these two monopoles

can be superimposed to give a ([1], 2, [1])-monopole, they occupy different 2×2 blocks of the

4× 4 su4 fields. These embedded monopoles are exceptional, not all ([1], 2, [1])-monopoles

are of this form.

All ([1], 2, [1]))-monopoles are D2 symmetric about some axes. The monopole can be

orientated by imposing D2 symmetry about particular axes. By imposing D2 symmetry

about the Cartesian axes, the monopoles are restricted to a three-dimensional geodesic

submanifold of the moduli space: �. The space N 3 of Nahm data described above, is the

quotient of the full moduli space by the full SO3 action and since this action is not free,

N 3 is not a manifold. The orientation of the monopole is fixed by imposing D2 symmetry

on it. Unlike the quotient space, this space, �, is not singular and imposing D2 symmetry

is a good way to fix the SO3 action. The D2 symmetry conditions are identical to (1.80)

but without the ordering condition (1.81). Thus, � is composed of the six copies of N 3

obtained by permuting the inequality (1.81). These copies are joined at the planes where
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two of the fi’s are equal. These data, where two of the fi’s are equal, correspond to

axially symmetric monopoles. The planes intersect on the lines of spherical symmetry. An

example of a line of spherical symmetry is

f1(t) = f2(t) = f3(t) = − 1

t + τ
(1.86)

where τ > 2.

There are exceptional lines in � given by letting k = 1 and taking τ to infinity. These

lines are notable as the fixed points of the U1×U1 action. These are the lines where

one fi is constant and the other two are zero. These lines correspond to the exceptional

([1], 2, [1])-monopoles produced by embedding two SU2 1-monopoles. They meet at the

point where all three fi are zero. This monopole is the embedding of two coincident su2

1-monopoles.

In their paper [DL], Dancer and Leese studied the head on collision of (2, [1])-mono-

poles. These collisions are described by geodesics on a two-dimensional manifold that they

call Y . � is the analogue of Y for ([1], 2, [1])-monopoles. The Y space looks like the letter

Y, the � space has been called � because it resembles that symbol. The boundaries of

� occur when (D, τ) attain the bounds imposed by analyticity. When (D, τ) attain these

bounds, the Nahm data has a pole at one or the other end. This means these boundaries

are actually copies of the space Y . In fact, the whole of � has eight copies of Y at its

boundaries.

� can be pictured. Take the R3 Cartesian axes and thicken them. Divide the surfaces

of these thickened axes by tracing their intersections with the x1x2, x2x3 and x3x1 planes.

The eight surface elements bounded by these lines are the eight copies of Y . The interior

of the thickened axes is �. The Cartesian axes themselves are the lines of embedded

monopoles. The origin is the spherical embedded monopole. The intersections of the six

planes x1 = ±x2, x2 = ±x3 and x3 = ±x1 with � are the planes of axially symmetric

monopoles. The lines x1 = ±x2 = ±x3 are the lines of spherically symmetric monopoles.

This picture of � is not metrically correct.

In Fig. 1.10 some attempt has been made at illustrating the picture of � described

above. In Fig. 1.10a � itself is drawn. It resembles thickened Cartesian axes, the dashed
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a b c

Figure 1.10: The space �.

line along its surface marks the boundary between different copies of Y on its asymp-

totic boundary. In Fig. 1.10b are drawn the planes of axially symmetric monopoles. The

Cartesian axes are marked by the dashed lines and correspond to embedded monopoles; the

dotted lines mark the intersections of three planes and correspond to spherically symmetric

monopoles. In Fig. 1.10c is drawn the x1x2-plane slice of �. These are the data considered

by Lee and Lu [LL]. SO5 can be embedded in SU4 and those ([1], 2, [1])-monopoles in Fig.

1.10c have fields in the image of this embedding SO5 and so may be reinterpreted as SO5

monopoles.
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Chapter 2

Symmetric Monopoles

The su2 1-monopole is spherically symmetric and its fields are known explicitly [PS].

For charges higher than one, the most symmetric su2 monopoles are axially symmetric.

The axially symmetric 2-monopole was discovered by Ward [Wa1] and by Forgács, Horváth

and Palla [FHP]. It was quickly realised that there are axially symmetric k-monopoles for

each k [Pr, PR, Hi2]. Also, at this time, the ADHMN construction was used to construct

general 2-monopoles [BPP, Pa]. No new multimonopoles were discovered until the paper

of Hitchin, Manton and Murray [HMM]. In this paper, there is a tetrahedrally symmetric

3-monopole and a cubic 4-monopole.

In their paper, Hitchin, Manton and Murray solve the Nahm equations for the tetra-

hedral 3-monopole and the cubic 4-monopole. The Nahm equations for these symmetric

multimonopoles are much simpler than the general Nahm equations. By imposing symme-

try the intractable general problem is reduced to a tractable special case. This approach

is very fruitful. In this chapter it is explained how the methods of Hitchin, Manton and

Murray are extended and exploited, leading to the discovery of further multimonopoles.

There is a dodecahedral 7-monopole, described in Sect. 2.3 and an octahedral 5-monopole,

described in Sect 2.4. These monopoles are the subject of [HS2]. Before these new multi-

monopoles are described, the tetrahedral 3-monopoles and cubic 4-monopole are discussed

in Sect. 2.1. In this section are the pictures of these monopoles which first appeared

in [HS1]. These pictures are the result of a numerical implementation of the ADHMN
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construction. The method for applying symmetry to Nahm data is described in Sect. 2.2.

Sections 2.1 to 2.4 demonstrate how useful it is to apply symmetry to find new multi-

monopoles. The calculations themselves, however, are tedious. Sections 2.3 and 2.4 contain

some large matrices. It is very satisfactory to have explicit solutions to the Nahm equa-

tions and thus pictures of the multimonopoles themselves. However, it is also satisfying to

find that because of the rational map descriptions it is possible to understand something

of symmetric multimonopoles without having to solve the corresponding symmetric Nahm

equations. These rational map descriptions are discussed in Sect. 2.5 to 2.7.

There are two rational map descriptions, that of Donaldson and that of Jarvis. Each

description has different advantages. The Donaldson rational maps are introduced in Sect.

2.5. It is not possible to study all symmetries with these maps. However, it is easy to deduce

qualitative features of a monopole from the corresponding Donaldson rational map. As

an example, it is demonstrated that there is a one-parameter family of C4h 5-monopoles

which pass through the octahedral 5-monopole. This one-parameter family is a geodesic

and the qualitative features of the corresponding scattering process are derived from the

rational maps.

In Sect. 2.6, the Donaldson rational map description is used to discover a large family

of geodesics. These scattering processes have rotary-reflection symmetries: they were

named twisted line scattering geodesics in [HS3]. The methods of Sect. 2.5 reveal how the

monopoles behave during twisted line scattering. Twisted line scattering is revisited in

Chapter 3 where the Nahm equations are solved in the 3-monopole case.

The Jarvis rational map description permits the investigation of any symmetry. It can

determine the existence or nonexistence of any putative symmetric multimonopole. To

prove the existence of a symmetric multimonopole the corresponding symmetric rational

map must be constructed. This construction is explained in Sect. 2.7.

At the start of this chapter, symmetry is introduced as a way of simplifying the Nahm

equations. The rational map descriptions are then used to study symmetric multimonopoles

in a general way. It is now possible to tell which symmetric multimonopoles exist. The

Nahm equations are not usually solvable for a general multimonopole and it is interesting to
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ask for which symmetric multimonopoles can the Nahm equations be solved. This problem

is addressed in Chapter 3 and solving it leads to several further solutions to the Nahm

equations, including the 3-monopole twisted line scattering mentioned above.

2.1 Tetrahedral and cubic monopoles

In [HMM], Hitchin, Manton and Murray demonstrate that there exists a 3-monopole

with tetrahedral symmetry and a 4-monopole with octahedral symmetry. Their approach

combines the spectral curve and Nahm data formulations.

A rotation in space maps lines into one another. As a monopole is rotated, there is an

equivalent transformation of the spectral curve resulting from the transformation of (η, ζ).

An SO3 rotation in R3 of 2θ about the unit vector (n1, n2, n3) corresponds to the Möbius

transformation ζ → ζ ′ where

ζ ′ =
(cot θ + in3)ζ + (n2 − in1)

−(n2 + in1)ζ + (cot θ − in3)
. (2.1)

It follows from the definition of η that it transforms as η → η ′ where

η′ =
η

[−(n2 + in1)ζ + (cot θ − in3)]
2 . (2.2)

An algebraic curve P (η, ζ) = 0 is then invariant under an element of SO3 if P (η′, ζ ′) = 0

is the same algebraic curve. In [HMM], this is extended to reflection in the x1x2-plane:

σ : R3 → R3 (2.3)

(x1, x2, x3) 7→ (x1, x2,−x3).

This corresponds to the map

σ : (η, ζ) 7→ (
−η̄

ζ̄2
,
1

ζ̄
) (2.4)

on TP1. Combining this involution with the reality transformation (1.46) gives

σ ◦ τ : (η, ζ)→ (η,−ζ). (2.5)

Thus, if an algebraic curve P (η, ζ) = 0 of the form (1.34), satisfying the reality condition

(1.47), is invariant under the reflection σ, P (η,−ζ) = 0 is the same curve as P (η, ζ) = 0.
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This allows algebraic curves symmetric under a given finite subgroup G of O3 to be

calculated. Consider G = C2, the group generated by a rotation of π. The axis of rotation

is taken to be the x3-axis. C2 is generated in TP1 by

ζ ′ = eπiζ (2.6)

η′ = eπiη. (2.7)

The degree two centred algebraic curve

η2 + α4ζ
4 + α3ζ

3 + α2ζ
2 + α1ζ + α0 = 0 (2.8)

satisfies the reality condition (1.47) provided α2 is real, α1 = −ᾱ3 and α0 = ᾱ4. This

transforms under (2.7) into

η2 + α4ζ
4 − α3ζ

3 + α2ζ
2 − α1ζ + α0 = 0 (2.9)

and so this algebraic curve is C2 symmetric about the x3-axis if α3 = α1 = 0.

2.1.1 Platonic symmetries

The tetrahedral group T is the group of rotational symmetries of a tetrahedron. It has

twelve elements and is isomorphic to the permutation group A4. The octahedral group O

is the group of rotational symmetries of the octahedron or, equivalently, the cube. It has

24 elements and is isomorphic to S4. The icosahedral group Y is the group of rotational

symmetries of the icosahedron or, equivalently, the dodecahedron. It has sixty elements

and is isomorphic to A5. As pointed out in [HMM], the simplest way to construct algebraic

curves invariant under these groups is to exploit the work presented by Klein in his classic

book [K].

Let (ζ0, ζ1) be homogeneous coordinates on the Riemann sphere such that ζ = ζ1/ζ0. If

q2r(ζ0, ζ1) is a degree 2r homogeneous polynomial invariant under the finite rotation group

G then the corresponding inhomogeneous polynomial

q2r(ζ) =
1

ζ2r
0

q2r(ζ0, ζ1) (2.10)
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transforms identically to ηr under G. Thus, an algebraic curve of the form (1.34) is G-

invariant if any nontrivial polynomial coefficient a2r(ζ) is derived from a G-invariant degree

2r homogeneous polynomial as in (2.10). These G-invariant homogeneous polynomials are

known as Klein polynomials. They are given in [K] for G = T, O, Y . In [HMM] they are

presented in a convenient table form. That table is reproduced here as Fig. 2.1.

In Fig. 2.1 are given the homogeneous polynomials qV , qE and qF for G = T, O, Y .

The polynomials qV have zeros on the vertices of the relevant polyhedron, the polynomials

qE have zeros on the midpoints of the edges and the polynomials qF have zeros on the

midpoints of the faces. These polynomials are obviously dependent on orientation. The

tetrahedron is oriented so that its vertices lie on (1/
√

3)(±1,±1,±1) with either two or no

signs negative. It is also useful to know the qE polynomial for a tetrahedron oriented so

that one vertex is on the positive x3-axis and one edge intersects the positive x1-axis. It is

ζ6
1 + 5

√
2ζ3

1ζ
3
0 − ζ6

0 . (2.11)

The octahedron has its vertices on the Cartesian axes. The icosahedron has its uppermost

vertex on the x3-axis and one of the five edges leaving it is in the (x1 > 0)x3-halfplane.

Only some of the inhomogeneous polynomials are strictly invariant. These polynomials

are marked with a star. The tetrahedral polynomials qV and qF acquire factors of e±2πi/3

respectively under rotations of 2π/3 about a three-fold axes. The octahedral polynomials

qV and qE acquire factors of −1 under a rotation by π/2 about a four-fold symmetry

axis. These polynomials can be combined together to form invariant polynomials of higher

degree.

2.1.2 Tetrahedral 3-monopole and cubic 4-monopole

In the edge-upward orientation, a tetrahedrally invariant degree three algebraic curve is

η3 + iaT ζ(ζ4 − 1) = 0 (2.12)

or, in the vertex-upward orientation (2.11),

η3 +

√
2

33/2
aT (ζ6 + 5

√
2ζ3 − 1) = 0, (2.13)
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G qV qE qF

T ζ4
1 + 2

√
3iζ2

1ζ
2
0 + ζ4

0 ζ1ζ0(ζ
4
1 − ζ4

0 ) ? ζ4
1 − 2

√
3iζ2

1ζ
2
0 + ζ4

0

O ζ1ζ0(ζ
4
1 − ζ4

0)
ζ12
1 − 33ζ8

1ζ
4
0

−33ζ4
1ζ

8
0 + ζ12

0

ζ8
1 + 14ζ4

1ζ
4
0 + ζ8

0 ?

Y ζ1ζ0(ζ
10
1 + 11ζ5

1ζ
5
0 − ζ10

0 ) ?

ζ30
1 + 522ζ25

1 ζ5
0

−10005ζ20
1 ζ10

0 − 10005ζ10
1 ζ20

0

−522ζ5
1ζ

25
0 + ζ30

0 ?

ζ20
1 − 228ζ15

1 ζ5
0

+494ζ10
1 ζ10

0

+228ζ5
1ζ

15
0 + ζ20

0 ?

Figure 2.1: Invariant homogeneous polynomials.

where aT is real. These algebraic curves can be obtained one from the other by rotation

and the factor of −i
√

2/33/2 results from that rotation. Up to orientation, this is the lowest

degree tetrahedral algebraic curve. The lowest degree octahedrally invariant degree four

algebraic curve is

η4 + aO(ζ8 + 14ζ4 + 1) = 0, (2.14)

where aO is real. Finally, the lowest degree icosahedral curve is

η6 + aY ζ(ζ10 + 11ζ5 − 1) = 0, (2.15)

with aY real. These are simply G-invariant algebraic curves in TP1. It is not obvious for

which values of aT , aO or aY , if any, they are the spectral curves of monopoles. In [HMM],

the ADHMN construction is used to prove that

η3 + i
Γ(1/6)3Γ(1/3)3

48
√

3π3/2
ζ(ζ4 − 1) = 0 (2.16)

η4 +
3Γ(1/4)8

1024π2
(ζ8 + 14ζ4 + 1) = 0 (2.17)
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are spectral curves and, thus, that there is a tetrahedral 3-monopole and an octahedral

4-monopole. It is also proved that there is no value of aY such that the icosahedral curve of

degree six is a spectral curve. Therefore, there is no 6-monopole with icosahedral symmetry.

Since the Nahm data of the tetrahedral 3-monopole and octahedral 4-monopole are

known, it is interesting to examine surfaces of constant energy density for these monopole

configurations. The easiest way to calculate energy density is to use the Ward’s formula

[Wa1],

E = 4|Φ|2. (2.18)

Thus, only the Higgs field Φ is required. The ADHMN construction has been described in

Chapter 1. It allows the monopole fields to be calculated from their Nahm data. The Nahm

data which correspond to monopoles with Platonic symmetry are sufficiently complicated

to preclude the calculation of a closed expression for Φ. A numerical implementation of

the procedure is required and one is presented in [HS1].

Figure 2.2 displays the output of this numerical implementation for the tetrahedral 3-

monopole. The plot shows a surface of constant energy density. The tetrahedral symmetry

of this surface is clearly evident and plots for other values of energy density close to this

one are qualitatively similar. For large energy density, the surface breaks up into four

disconnected pieces centred on the vertices of a tetrahedron.

Figure 2.3 displays the output of the numerical ADHMN construction for the octahe-

dral 4-monopole. The plot shows a surface of constant energy density. Note that for the

monopole with octahedral symmetry, a constant energy density surface could have resem-

bled an octahedron or a cube: it is the latter. For large values of E , the surface breaks up

into eight disconnected pieces on the vertices of a cube.

2.1.3 Tetrahedral (3, [2], [1])-monopoles

It is noted, as an aside, that SU2 data are easily adapted to other gauge groups. This is

done in Chapter 1; the 2× 2 data is adapted to give ([1], 2, [1]) data. In the same way, the

symmetric data corresponding to the tetrahedral 3-monopole can be adapted to give data
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Figure 2.2: Tetrahedral 3-monopole; surface of constant energy density.

for a tetrahedral (3, [2], [1])-monopole or even a tetrahedral ([1], [2], 3, [2], [1])-monopole.

The tetrahedral 3× 3 data have skyline diagram

�

�

�

�
�

�

. (2.19)

The data have poles at t = 1 and t = −1. (3, [2], [1]) data have skyline

�

�

�

�
	

�

. (2.20)

There is a pole at t = −3 and none at t = 1. This is a weaker condition and, moving from

the 3-monopole case to the (3, [2], [1])-monopole case, the unique tetrahedral data spawn

a one-parameter family of tetrahedral data [HS5].
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Figure 2.3: Cubic 4-monopole; surface of constant energy density.

Since the fixed point set of a group action gives a totally geodesic submanifold, this

one-parameter family is a geodesic inM0
(3,[2],[1]). Within the moduli space approximation,

this family of monopoles may be interpreted as describing the low energy dynamics of three

deforming monopoles. Surfaces of constant energy density for monopoles along the geodesic

are plotted in Fig. 2.4. During the course of the motion, a tetrahedron gets smoothed out

into a sphere and then deforms into the dual tetrahedron. This is an example of dynamics in

which the monopoles never become separated: a feature of monopole dynamics in theories

with nonAbelian residual symmetry.

In Chapter 3 a one-parameter family of tetrahedral 4× 4 data is presented, the above

construction would derive from the same solutions to the Nahm equations a two-parameter

family of tetrahedral (4, [3], [2], [1])−monopoles. In the same way it is noted that in [HMS]

putative icosahedral 6 × 6 data are examined. These data satisfy the correct boundary

condition at t = −1: the residue is the irreducible representation 6. However it is not SU2

monopole data because at t = 1 the matrix residues are a reducible representation: 2+2+2.

This means that, with t rescaled, the data are data for an icosahedral (6, [4], [2])-monopole

and, so, contained in the proof that no 6-monopole has icosahedral symmetry is a proof
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Figure 2.4: Tetrahedral scattering of a (3, [2], [1])-monopole.
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that there is an icosahedrally symmetric (6, [4], [2])-monopole. Many opportunities exist

to derive higher gauge group data like this from the data for SU2 monopoles. It is more

interesting to find new SU2 Nahm data. In the next section the construction of symmetric

Nahm data is explained and in Sect. 2.3 this construction will be used show that there is

an icosahedrally symmetric 7-monopole.

2.2 Symmetric Nahm data

The combined spectral curve and Nahm data approach of Hitchin, Manton and Murray

[HMM] can be adapted and extended to apply to other symmetric monopoles.

The Nahm data are an R3 × slkC valued function of s, which transform under the

rotation group SO3 as

3× sl(k). (2.21)

Since gl(k) ∼= k × k Clebsh-Gordon decomposition gives

gl(k) ∼= 2k − 1 + 2k − 3 + . . . + 3 + 1 (2.22)

and, so,

sl(k) ∼= 2k − 1 + 2k − 3 + . . . + 3. (2.23)

Substituting into (2.21)

3× sl(k) ∼= 3× (2k − 1 + 2k − 3 + . . . + 3)

∼= (2k + 1 + 2k − 1 + 2k − 3) + . . . + (5 + 3 + 1). (2.24)

Thus, for example, the Nahm data corresponding to 4-monopoles are in the carrier space

(9+7+5)+ (7+5+3)+ (5+3+1). It is convenient to write this as (9u +7m +5l)+ (7u +

5m + 3l) + (5u + 3m + 1l) where the subscripts u, m and l, standing for upper, middle and

lower allow isomorphic representations with different pedigrees to be distinguished. The

1l representation is invariant under all of SO3.
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X, Y and H satisfying the commutation relations

[X, Y ] = H, (2.25)

[H, X] = 2X,

[H, Y ] = −2Y

are a basis for su2. They may be represented by the principal su2 subalgebra of sl(k)

which in turn acts on the algebra by the adjoint action. In this representation, X is a rank

k− 1 nilpotent element and a basis of sl(k) can be generated by acting with Y on X r, for

r = 1, 2, .., k − 1. Thus,

Xk−1 (adY )Xk−1 (adY )2Xk−1 . . . . . . (adY )2k−2Xk−1

... . . .

Xr (adY )Xr (adY )2Xr . . . (adY )2rXr

... . . .

X (adY )X (adY )2X

is a basis of sl(k) where adY denotes the adjoint action of Y and is given on a general

matrix M by adY M = [M, Y ]. The element Xr of the Abelian nilpotent subalgebra

〈X, X2, . . . Xk−1〉 is the highest weight vector for the su2 representation 2r + 1 lying in the

decomposition (2.24) of sl(k).

Since the invariant polynomials are known, it is convenient to exploit the representations

of su2 on homogeneous polynomials over P1. r + 1 is defined on degree r homogeneous

polynomials by the identification

X = ζ1
∂

∂ζ0
, (2.26)

Y = ζ0
∂

∂ζ1
,

H = −ζ0
∂

∂ζ0
+ ζ1

∂

∂ζ1
.

In the case of degree r homogeneous polynomials, the highest weight vector is ζ r
1 and

the basis is {ζr
1 , (ζ0

∂
∂ζ1

)ζr
1 , . . . , (ζ0

∂
∂ζ1

)rζr
1}. Thus, a degree 2r homogeneous polynomial
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q2r(ζ0, ζ1) is related to a matrix S in the 2r + 1 representation of the decomposition of

sl(k) by rewriting q2r(ζ0, ζ1) as q2r(ζ0
∂

∂ζ1
)ζ2r

1 and then letting

S = q2r(adY )Xr. (2.27)

It is now possible to construct G symmetric 2r + 1u k × k Nahm data corresponding

to the G symmetric homogeneous polynomial p(ζ0, ζ1). The inclusion

2r + 1 ↪→ 3× 2r − 1 ∼= 2r + 1u + 2r − 1m + 2r − 3l (2.28)

is given on polynomials by

p(ζ0, ζ1) 7→ ξ2
1 × p11(ζ0, ζ1) + 2ξ0ξ1 × p10(ζ0, ζ1) + ξ2

0 × p00(ζ0, ζ1) (2.29)

where

pab(ζ0, ζ1) =
∂2p

∂ζa∂ζb

(ζ0, ζ1). (2.30)

The polynomial expression ξ2
1×p11(ζ0, ζ1)+2ξ0ξ1×p10(ζ0, ζ1)+ξ2

0×p00(ζ0, ζ1) is rewritten

in the form

ξ2
1 × p11(ζ0

∂

∂ζ1
)ζ2r

1 + (ξo
∂

∂ξ1
)ξ2

1 × p10(ζ0
∂

∂ζ1
)ζ2r

1 +
1

2
(ξo

∂

∂ξ1
)2ξ2

1 × p00(ζ0
∂

∂ζ1
)ζ2r

1 . (2.31)

This defines a triplet of k × k matrices. Given a k × k representation of X, Y and H

above, the invariant Nahm triplet is

(S ′
1, S

′
2, S

′
3) = (q11(adY )Xr, q10(adY )Xr, q00(adY )Xr). (2.32)

The Nahm isospace basis is transformed. This transformation is given by

(S1, S2, S3) = (
1

2
S ′

1 + S ′
3,−

i

2
S ′

1 + iS ′
3,−iS ′

2). (2.33)

Relative to this basis the SO3-invariant Nahm triplet corresponding to the 1l representation

in (2.23) is given by (ρ1, ρ2, ρ3) where

ρ1 = X − Y, (2.34)

ρ2 = i(X + Y ),

ρ3 = iH.
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In applying this method to cases other than those considered in [HMM], it is sometimes

also necessary to construct invariant Nahm triplets lying in the 2r + 1m representations.

This problem is similar to that of finding the spin states of two particles in quantum

mechanics. The corresponding 2r + 1u triplet is constructed first. This triplet is then

written in the canonical form

[c0 + c1(adY × 1 + 1× adY ) + . . . + ci(adY × 1 + 1× adY )i (2.35)

+ . . . + c2r(adY × 1 + 1× adY )2r] X ×Xr

and mapped isomorphically into 2r + 1m by mapping the highest weight vector X ×Xr to

the highest weight vector

X × adY Xr+1 − 1

r + 1
adY X ×Xr+1. (2.36)

This highest weight vector is derived by requiring it to be annihilated by the ladder operator

adX × 1 + 1 × adX. A 2r + 1l invariant can also be constructed by this method but by

using the highest weight vector

X × (adY )2Xr+2 − (2r + 3)adY X × adY Xr+2 − (2r + 3)(r + 2)(adY )2X ×Xr+2. (2.37)

This means the construction of symmetric Nahm triplets is known. In the next two

sections this method will be applied to construct icosahedral 7×7 data and octahedral 5×5

triplets. Substituting these symmetric Nahm triplets into the Nahm equations simplifies

the Nahm equations; the Nahm equations are solvable in both these cases. This means the

numerical ADHMN construction mentioned in Sect. 2.1 can be used to produce pictures of

these monopoles. At the end of Sect. 2.3 it is seen that the icosahedral 7-monopole looks

like a dodecahedron. At the end of Sect. 2.4 it is seen that the octahedral 5-monopole

looks like a octahedron.

2.3 Dodecahedral 7-monopole

When it was found that there is no icosahedrally symmetric 6-monopole, it was asked

whether there is an icosahedrally symmetric 7-monopole. Since the discovery of the Jarvis
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rational map description it would be possible to show, without recourse to the Nahm

equations, that there is such a monopole. How this is done is the subject of Sect. 2.7.

However, the question of the existence of the icosahedrally symmetric 7-monopole was first

answered using Nahm data [HS2]. In this section the Nahm data for this monopole is

constructed. The reward for finding this Nahm data is the picture of the monopole. This

picture is at the end of this section. Solving the Nahm equations has this advantage over

the rational map descriptions: it allows convenient numerical evaluation of the fields.

7× 7 Nahm data transforms as

(15u + 13m + 11u) + (13u + 11l + 9l) + . . . + (5u + 3l + 1l). (2.38)

In addition to the SO3 invariant 1l there are icosahedral invariant data in 13m and 13u.

These are constructed explicitely.

The minimum degree icosahedrally invariant homogeneous polynomial is [K]

ζ11
1 ζ0 + 11ζ6

1ζ
6
0 − ζ1ζ

11
0 . (2.39)

Polarizing this gives

ξ2
1×(110ζ9

1ζ0+330ζ4
1ζ

6
0 )+2ξ1ξ0×(11ζ10

1 +396ζ5
1ζ

5
0−11ζ10

0 )+ξ2
0×(330ζ6

1ζ
4
0−110ζ1ζ

9
0 ). (2.40)

This is proportional to

ξ2
1 × (ζ0

∂

∂ζ1

+
1

5040
(ζ0

∂

∂ζ1

)6)ζ10
1 + 2ξ1ξ0 × (1 +

1

840
(ζ0

∂

∂ζ1

)5 − 1

10!
(ζ0

∂

∂ζ1

)10)ζ10
1

+ ξ2
0 × (

1

168
(ζ0

∂

∂ζ1
)4 − 1

9!
(ζ0

∂

∂ζ1
)9)ζ10

1 , (2.41)

which gives matrices

X × (adY +
1

5040
(adY )6)X5 + adY X × (1 +

1

840
(adY )5 − 1

10!
(adY )10)X5

+
1

2
(adY )2X × (

1

168
(adY )4 − 1

9!
(adY )9)X5. (2.42)
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A basis for 8 is given by

H =




6 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −2 0 0

0 0 0 0 0 −4 0

0 0 0 0 0 0 −6




, (2.43)

Y =




0 0 0 0 0 0 0
√

6 0 0 0 0 0 0

0
√

10 0 0 0 0 0

0 0
√

12 0 0 0 0

0 0 0
√

12 0 0 0

0 0 0 0
√

10 0 0

0 0 0 0 0
√

6 0




,

X =




0
√

6 0 0 0 0 0

0 0
√

10 0 0 0 0

0 0 0
√

12 0 0 0

0 0 0 0
√

12 0 0

0 0 0 0 0
√

10 0

0 0 0 0 0 0
√

6

0 0 0 0 0 0 0




.
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Using MAPLE, the invariant Nahm triplet is calculated to give the 13u invariant

Z1 =




0 5
√

6 0 0 7
√

60 0 0

−5
√

6 0 −9
√

10 0 0 0 0

0 9
√

10 0 5
√

12 0 0 −7
√

60

0 0 −5
√

12 0 5
√

12 0 0

−7
√

6
√

10 0 0 −5
√

12 0 −9
√

10 0

0 0 0 0 9
√

10 0 5
√

6

0 0 7
√

60 0 0 −5
√

6 0




, (2.44)

Z2 = i




0 5
√

6 0 0 −7
√

60 0 0

5
√

6 0 −9
√

10 0 0 0 0

0 −9
√

10 0 5
√

12 0 0 7
√

60

0 0 5
√

12 0 5
√

12 0 0

−7
√

60 0 0 5
√

12 0 −9
√

10 0

0 0 0 0 −9
√

10 0 5
√

6

0 0 7
√

60 0 0 5
√

6 0




,

Z3 = i




−12 0 0 0 −14
√

6 0 0

0 48 0 0 0 0 −14
√

6

0 0 −60 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 60 0 0

−14
√

6 0 0 0 0 −48 0

0 −14
√

6 0 0 0 0 12




.

To calculate the 13m invariant (2.42) is put in the form (2.36). It is proportional to

[11!(adY ×1+1×adY )+7920(adY ×1+1×adY )6−(adY ×1+1×adY )11]X×X5. (2.45)
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Then, using the isomorphism mentioned earlier, the matrices

Y1 =




0
√

6 0 0 −
√

60 0 12
√

6 0 −3
√

10 0 0 12 0

0 −3
√

10 0 5
√

12 0 0 −
√

60

0 0 5
√

12 0 −5
√

12 0 0

−
√

60 0 0 −5
√

12 0 3
√

10 0

0 12 0 0 3
√

10 0 −
√

6

12 0 −
√

60 0 0 −
√

6 0




, (2.46)

Y2 = i




0
√

6 0 0
√

60 0 12

−
√

6 0 −3
√

10 0 0 −12 0

0 3
√

10 0 5
√

12 0 0
√

60

0 0 −5
√

12 0 −5
√

12 0 0

−
√

60 0 0 5
√

12 0 3
√

10 0

0 12 0 0 −3
√

10 0 −
√

6

−12 0 −
√

60 0 0
√

6 0




,

Y3 = i




0 0 0 0 0 −10
√

6 0

0 0 0 0 0 0 10
√

6

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

10
√

6 0 0 0 0 0 0

0 −10
√

6 0 0 0 0 0




are obtained

The reduced Nahm equations are derived from the commutation relations. The required

relations involving ρ matrices and Z matrices are

[ρ1, ρ2] = 2ρ3, (2.47)

[Z1, Z2] = −750ρ3 + 90Z3,

[Z1, ρ2] + [ρ1, Z2] = −10Z3.
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Because of the closed form of these relations, it is possible to derive a consistent set of

Nahm equations from the icosahedrally invariant Nahm data

Ti(t) = x(t)ρi + z(t)Zi. (2.48)

The invariant Nahm triplet (Y1, Y2, Y3) can be consistently ignored. Combining (2.47) and

(2.48) gives the reduced Nahm equations

dx

dt
= 2x2 − 750z2, (2.49)

dz

dt
= −10xz + 90z2

with corresponding spectral curve

η[η6 + aζ(ζ10 + 11ζ5 + 1)] = 0, (2.50)

where

a = 552960(14xz − 175z2)(x + 5z)4 (2.51)

is a constant.

To solve equations (2.49), let u = x + 5z and v = x− 30z so that

du

dt
= 2uv (2.52)

dv

dt
= 6u2 − 4v2,

a = 110592(u6 − v2u4) ≡ 110592κ6.

Using the constant to eliminate v, the equation for u becomes

du

dt
= −2u2

√
1− κ6u−6. (2.53)

If u = −κ
√

℘(s), where s = 2κ(t + 1), then ℘(s) is the Weierstrass function satisfying
(

d℘

ds

)2

= 4(℘3 − 1). (2.54)

Thus the Nahm equations are solved by

x(t) =
2κ

7

[
−3
√

℘ +
1

4℘

d℘

ds

]
, (2.55)

z(t) = − κ

35

[√
℘ +

1

2℘

d℘

ds

]
. (2.56)
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Figure 2.5: Dodecahedral 7-monopole; surface of constant energy density.

These functions are analytic in t ∈ (−1, 1) and have simple poles at t = −1 and t = 1

provided κ = ω1, where 2ω1 is the real period of ℘(s). ω1 is explicitly known for this

Weierstrass function;

ω1 =
Γ(1/6)Γ(1/3)

8
√

3π
(2.57)

and, so,

a = 110592κ6 =
Γ(1/6)6Γ(1/3)6

64π3
. (2.58)

Near t = −1

℘(s) ∼
(

1

s

)2

(2.59)

and, so, the residues of x and z are −1/2 and 0 respectively. At t = 1 they are, respec-

tively, −5/14 and −1/35. At both poles, the eigenvalues of the matrix residue of iT3 are

{±3,±2,±1, 0}. This demonstrates that the matrix residues define the irreducible rep-

resentation at each end of the interval. Hence, there is a 7-monopole with icosahedral

symmetry given by the spectral curve

η7 +
Γ(1/6)6Γ(1/3)6

64π3
ζ(ζ10 + 11ζ5 − 1)η = 0. (2.60)

The energy density of this monopole is computed using the numerical implementation

of the ADHMN construction. Figure 2.5 shows a surface of constant energy density. The
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surface resembles a dodecahedron. The energy density takes its maximum value on the

twenty vertices of the dodecahedron.

2.4 Octahedral 5-monopole

Towards the end of the last section is found the spectral curve of the dodecahedral

7-monopole (2.60). It is a reducible curve, the two components are the star; η = 0, and

an icosahedrally symmetric degree six algebraic curve. It is simple to envisage a similar

octahedrally symmetric degree five algebraic curve derived by multiply an octahedrally

symmetric degree four curve by η. In this section it is shown that there is a 5-monopole

whose spectral curve has this form. The methods are very similar to those of the last

section.

From Fig. 2.1, the lowest degree octahedrally invariant homogeneous polynomial is

ζ8
1 + 14ζ4

1ζ
4
0 + ζ8

0 . (2.61)

Polarizing this gives

ξ2
1 × (56ζ6

1 + 168ζ2
1ζ

4
0) + 2ξ1ξ0 × (224ζ3

1ζ
3
0 ) + ξ2

0 × (56ζ6
0 + 168ζ4

1ζ
2
0 ) (2.62)

which is written in the form

ξ2
1×(56+

7

15
(ζ0

∂

∂ζ1

)4)ζ6
1 +2ξ1ξ0×

28

15
(ζ0

∂

∂ζ1

)3ζ6
1 +ξ2

0×(
7

90
(ζ0

∂

∂ζ1

)6+
28

5
(ζ0

∂

∂ζ1

)2)ζ6
1 , (2.63)

giving matrices

X× (56+
7

15
adY 4)X3 +adY X× 28

15
adY 3X3 +

1

2
adY 2X× (

7

90
adY 6 +

28

5
adY 2)X3. (2.64)

The su2 basis (2.25) may be represented by

H =




−4 0 0 0 0

0 −2 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 4




, (2.65)
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X = −i




0 0 0 0 0

2 0 0 0 0

0
√

6 0 0 0

0 0
√

6 0 0

0 0 0 2 0




,

Y = i




0 2 0 0 0

0 0
√

6 0 0

0 0 0
√

6 0

0 0 0 0 2

0 0 0 0 0




.

This gives the invariant Nahm triplet in 9u

Y1 = i




0 −6 0 10 0

−6 0 2
√

6 0 10

0 2
√

6 0 2
√

6 0

10 0 2
√

6 0 −6

0 10 0 −6 0




, (2.66)

Y2 =




0 −6 0 −10 0

6 0 2
√

6 0 −10

0 −2
√

6 0 2
√

6 0

10 0 −2
√

6 0 −6

0 10 0 6 0




,

Y3 = i




8 0 0 0 0

0 −16 0 0 0

0 0 0 0 0

0 0 0 16 0

0 0 0 0 −8




.
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The 9u invariant (2.64) is written in the form (2.36) as
[
56 +

7

15
(adY × 1 + 1× adY )4 +

1

720
(adY × 1 + 1× adY )8

]
X ×X3 (2.67)

which, when mapped using the isomorphism, produces the invariant Nahm triplet in 9m

Z1 = i




0 −1 0 −1 0

1 0
√

6 0 1

0 −
√

6 0 −
√

6 0

1 0
√

6 0 I

0 −1 0 −1 0




, (2.68)

Z2 =




0 −1 0 1 0

−1 0
√

6 0 −1

0
√

6 0 −
√

6 0

1 0 −
√

6 0 1

0 −1 0 1 0




,

Z3 = i




0 0 0 0 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−4 0 0 0 0




.

In a similar fashion to the icosahedral case, the (Z1, Z2, Z3) can be consistently ignored.

The Nahm equations become

dx

dt
= 2x2 − 48y2, (2.69)

dy

dt
= −6xy − 8y2 (2.70)

and the spectral curve is

η5 + 768κ4η(ζ8 + 14ζ4 + 1) = 0 (2.71)

where

κ4 = 5y(x + 3y)(x− 2y)2. (2.72)
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Equations (2.69-2.70) are identical to those for the cubic 4-monopole and are solved by

x = 2κ(5℘2 − 3)

(
5
d℘

ds

)−1

, (2.73)

y = 2κ

(
5
d℘

ds

)−1

(2.74)

where s = 2κ(t + 1) and ℘(s) is the Weierstrass elliptic function satisfying

(
d℘

ds

)2

= 4(℘3 − ℘). (2.75)

As in [HMM], the argument of κ is chosen to be π/4 and s lies on the line from 0 to

ω2 = ω1 + ω3, where 2ω1 is the real period of the elliptic function (2.75) and 2ω3 is

the imaginary period. By examining the eigenvalues of the residue of iT3, the boundary

conditions at t = −1 and t = 1 are satisfied provided that

ω2 = 4κ. (2.76)

This period may be explicitly calculated, with the result that there exists an octahedral

monopole with spectral curve

η5 +
3Γ(1

4
)8

16π2
(ζ8 + 14ζ4 + 1)η = 0. (2.77)

The energy density may be calculated using the numerical scheme. Figure 2.3 shows a

surface of constant energy density for this monopole. It resembles an octahedron with the

energy density taking its maximum value on the six vertices of the octahedron.

In the geodesic approximation, scattering processes are approximated by geodesics. In

this approximation four monopoles moving symmetrically towards a fifth at the origin form

the octahedral 5-monopole before separating out again into a stationary axisymmetric 3-

monopole and two 1-monopoles moving in opposite directions perpendicular to the plane

of scattering. The existence of this surprising process is demonstrated in the next section

using rational maps.
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Figure 2.6: Octahedral 5-monopole; surface of constant energy density.

2.5 Monopoles and rational maps

There are two rational map descriptions of monopoles: the Donaldson rational map

[Do] and the more recent Jarvis rational map [J]. These give very tractable parameter-

izations of the moduli space and are useful when studying symmetric monopoles. The

existence of a particular monopole may be established before an attempt is made to solve

the Nahm equations.

Monopole moduli spaces are equivalent to spaces of rational maps. Like spectral curves,

these rational maps describe solutions to the Hitchin equation (1.39). The spectral curve of

a monopole is the curve in P1 corresponding to lines in space along which the solutions to

the Hitchin equation are bounded in both directions. In contrast, the rational map records

rational information about solutions to the Hitchin equation along some set of lines. Two

different sets of lines give two different rational map descriptions. Lines parallel to a given

line give the Donaldson rational map, lines through a given point give the Jarvis rational

map.

The remainder of this section is divided into two subsections. In Subsect. 2.5.1 the
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Donaldson rational map is described and it is explained how symmetric Donaldson maps

are obtained. In Subsect. 2.5.2 the Donaldson rational maps for C4h symmetric 5-monopoles

are studied. It is shown, with reference to this example, how qualitative features about a

scattering process can be extracted from a one-parameter family of symmetric Donaldson

rational maps. These methods are applied in the next section to the twisted line scattering

geodesics. The section after that, Sect. 2.7, concerns the construction of symmetric Jarvis

maps.

2.5.1 The Donaldson rational map and symmetry

Following Hurtubise [Hu2], to construct the Donaldson rational map, a line and an

orthogonal plane in R3 are chosen to give the decomposition

R3 ∼= C×R. (2.78)

For convenience, the line is chosen to be the x3-axis and the complex coordinate on the x1x2-

plane is denoted by z. Solutions to the linear differential equation (1.39) are considered

along lines parallel to the x3-axis. This equation has two independent solutions. A basis

(v0, v1) for the solutions can be chosen such that

lim
x3→∞

v0(x3)x
−k/2
3 ex3 = e0, (2.79)

lim
x3→∞

v1(x3)x
k/2
3 e−x3 = e1,

where e0, e1 are constant in some asymptotically flat gauge. Thus, v0 is bounded and v1 is

unbounded as x3 → ∞. Similarly, there is a basis (v′
0, v

′
1) such that v′

0 is bounded and v′
1

is unbounded as x3 → −∞. The lines parallel to the x3-axis are parameterized by z and

for a general line

v′
0 = a(z)v0 + b(z)v1, (2.80)

v0 = a′(z)v′
0 + b(z)v′

1. (2.81)

for some scattering data a(z) and b(z). The ratio of a(z) and b(z) is formed. By cancelling

common factors
a(z)

b(z)
=

p(z)

q(z)
, (2.82)
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where p(z) and q(z) are coprime polynomials. p(z) is degree k−1 and q(z) is degree k and

monic.

In this way, the rational map is then given by

R(z) =
p(z)

q(z)
. (2.83)

Furthermore, since the spectral curve P (η, ζ) = 0 of a monopole corresponds to the

bounded solutions to (1.39),

q(z) = P (z, 0) = 0. (2.84)

Finally, it can be shown [AH] that the full scattering data are given by


 a b

−b′ −a′





 v0

v1


 =


 v′

0

v′
1


 (2.85)

where

aa′ = 1 + b′b. (2.86)

Since the construction of the rational map requires the choice of a direction in R3, it is

not possible to study the full symmetries of a monopole from its rational map. However,

some isometries are known [HMM]. These are the isometries which respect the R3 ∼= R×C

decomposition. They are, rotation in the plane: λ ∈U1, translation in plane: ν ∈ C,

translation perpendicular to the plane: x ∈ R and constant gauge transformation: µ ∈U1.

Under the composition of these transformations, a rational map R(z) transforms as

R(z)→ µ2e2xλ−kR(λ−1(z − ν)). (2.87)

Furthermore, under space reflection, x3 → −x3, R(z) = p(z)/q(z) transforms as

p(z)

q(z)
→ σ(p)(z)

q(z)
(2.88)

where σ(p)(z) is the unique polynomial of degree less than k such that σ(p)(z)p(z) ≡ 1 mod

q(z). These formulae are used to construct rational maps invariant under some subgroups

of O3. Because of the constant gauge transform µ appearing in (2.87) a rational map is

considered invariant under a rotation λ if its effect on the rational map is to change its
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overall phase. The factor of λ−k is conventional, it ensures that the denominator remains

monic.

A symmetric rational map corresponds to a symmetric monopole. For example, the

rational map of an axisymmetric k-monopole lying a distance x above the plane is

e2x+iχ

zk
(2.89)

and the full scattering data for such a monopole can be given as

 e2x+iχ zk

0 −e−(2x+iχ)


 . (2.90)

It is possible to define the space of strongly centred rational maps. A strongly centred

rational map is one which is equivalent to a monopole with a strongly centred spectral

curve. In [HMM], it is demonstrated that a strongly centred rational map is one for which

the average of the root of the denominator, q0, vanishes and whose discriminant is one.

The discriminant of the rational map

p(z)

q(z)
=

ak−1z
k−1 + . . . + a1z + a0

zk + bk−1zk−1 + . . . + b1z + b0
(2.91)

is

∆(p, q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . ak−1

a0 . . . . . . . . . ak−1

. . . . . . . . . . . . . . .

a0 . . . . . .. . . ak−1

b0 a1 . . . bk−1 1

b0 . . . . . . . . . bk−1 1

. . . . . . . . . . . . . . .

b0 . . . . . .. . . bk−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∏

i

p(βi), (2.92)

where {βi} are the roots of q(z) = 0. The discriminant of any rational map is nonzero:

∆(p, q) vanishes if and only if p(z) and q(z) have a common factor. Thus, a rational map

is strongly centred if

∑

i

βi = 0, (2.93)
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∏

i

p(βi) = 1. (2.94)

2.5.2 C4h 5-monopoles, an example

As an example of the construction of symmetric rational maps, let us consider C4h

symmetric 5-monopoles. C4h is the group generated by a π/2 rotation and a reflection in

an orthogonal plane. Using (2.87) and (2.88), the most general rational map of a strongly

centred 5-monopole, which is symmetric under both reflection in the x1x2-plane, denoted

σxy, and C4 rotation around the x3-axis, is

R5(z) =
2
a
z4 + 1

z5 + az
(2.95)

with a ∈ (0,∞). It is a one-parameter family of based rational maps.

This one-parameter family is significant because it is a geodesic. Since M0
k is a Rie-

mannian manifold, the fixed point set of the action of a group on it is totally geodesic. A

one-dimensional totally geodesic submanifold is a geodesic. In fact, this presents a strat-

egy for finding geodesics without knowledge of the metric. If a symmetry group G can be

found, so that there is only a one-parameter family of G symmetric k-monopoles, that one-

parameter family corresponds to a geodesic. In the geodesic approximation the monopole

dynamics proceed along that geodesic.

To understand the rate at which scattering processes proceed; to calculate, for example

the time advance or delay, the metric is needed. Nonetheless, qualitative information about

a scattering process may be derived if the geodesic is known but not the metric on it.

Qualitative information may be extracted from the rational map. It was suggested in

[HMM] and proved by Bielawski [Bi1] that for a rational map p(z)/q(z) with well-separated

poles β1, . . . , βk the corresponding monopole is approximately composed of unit charge

monopoles located at the points (x1, x2, x3), where x1 + ix2 = βi and x3 = 1
2
log |p(βi)|.

Thus, for large values of a, R5(z) corresponds to a monopole located at the origin and a

monopole a distance ±a along each of the diagonals x1 = ±x2. This interpretation breaks

down for a ∼ 1 since, for a ∼ 1, the poles of the denominator are not well-separated.
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In [AH], it is argued that for monopoles strung out in well-separated clusters along, or

nearly along, the x3-axis the first term in a large z expansion of the rational map R(z)

is e2x+iχ/zk where k is the charge of the topmost cluster and x is its elevation above the

plane. In [HS2], this is extended to the next highest cluster. If the next highest cluster

has charge m and is y above the plane, then the first two terms in the large z expansion

of the rational map are given by

R(z) ∼ e2x+iχ

zk
+

e2y+iφ

z2k+m
+ ... (2.96)

The topmost cluster, (A1, φ1), is assumed to be separated from the other monopoles.

Let v′′
0 be the solution bounded at x3 → −∞. For z large, the scattering is along lines well

removed from the spectral lines and so, in the region of (A1, φ1), the solution is dominated

by the exponentially growing one and is, therefore, close to v ′′
0 . Thus, the dominant term

in the rational map is the effect of scattering off (A1, φ1).

Now, the second highest monopole cluster, (A2, φ2), is separated from the monopoles

below it. The incoming solution is close to v′′
0 . The bounded solution leaving the (A2, φ2)

region is called v′
0 and the unbounded one v′

1. From (2.90)

v′′
0 = e2y+iφv′

0 + zmv′
1. (2.97)

Subsequent scattering off (A1, φ1) gives

v′
0 = −e−2x−iχv1, (2.98)

v′
1 = e2x+iχv0 + zkv1,

where v0 and v1 are the unbounded and bounded solutions, respectively, as x3 → ∞.

Substituting (2.98) into (2.97)

v′′
0 = zke2x+iχv0 + (zk+m − e−2(x−y)−i(χ−φ))v1, (2.99)

and so the rational map is dominated by

R(z) ∼ zme2x+iχ

zk+m − e−2(x−y)−i(χ−φ)
(2.100)
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and, since x� y � 1,

R(z)− e2x+iχ

zk
∼ e2y+iφ

z2k+m
. (2.101)

In the example of R5(z)

R5(z) ∼ 2

az
− 1

z5
(2.102)

for large z and so k = 1 and m = 3. This means that there is a cluster of three monopoles

at the origin and a monopole above the origin on the x3-axis.

Thus, R5(z) describes four monopoles approaching a monopole at the origin along

the positive and negative x1 = ±x2 diagonals. Since the octahedral 5-monopole has C4h

symmetry, it must lie on this geodesic and so the monopoles coalesce at some point to

form the octahedral 5-monopole. As a → 0, from (2.96), one monopole travels up the x3-

axis and three remain in a cluster at the origin. By reflection, the fifth monopole travels

down the x3-axis. In the a = 0 limit, there are 1-monopoles at (0, 0,±∞) and a toroidal

3-monopole centred on the origin.

2.6 Twisted line scattering

With only the Donaldson rational map description, the only way to use symmetry to

find geodesics is to find spatial symmetries which respect the decomposition of R3 into

C×R and, nonetheless, reduce the relevant moduli space to one parameter. The twisted

line scattering geodesics were discovered in this way.

These geodesics are geodesics of k-monopoles symmetric under the rotary-reflection

symmetry S2l, where l is an integer satisfying k − 1 ≥ l > k/2 and k > 2. The rotary-

reflection S2l is σxy ◦ Rotπ/l. Symmetry under S2l implies Cl symmetry. This is imposed

on the Donaldson rational map of a k-monopole. By (2.87) and (2.88) this requires the

rational map to have the form

R(z) =
c + bzl

zk−l(zl − a)
(2.103)

for some complex constants a, b, c. The requirement of S2l symmetry for this rational map

gives the constraint

(c− bzl)(c + bzl) = 1 mod zk−l(zl − a). (2.104)
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This can only be satisfied if a = 0 and c = ±1. By a phase choice, c = 1. The

symmetric rational maps are

R =
1 + bzl

zk
, (2.105)

parameterised by the complex number b. The rational maps in this family are strongly

centred. This family defines a surface of two real dimensions in the k-monopole moduli

space, denoted by Σl
k. It is a totally geodesic submanifold: it is the fixed point set of a

symmetry. Σl
k is a surface of revolution: the phase of b corresponds to the orientation

about the x3-axis. A reflection symmetry on the rational map may be imposed so that b is

real. This gives a geodesic in Σl
k corresponding to the generator of the surface of revolution.

Geodesic flow corresponds to b increasing monotonically from b = −∞ to b = +∞. If b = 0

then (2.105) is the rational map of the axisymmetric k-monopole, with the x3-axis as the

axis of symmetry. Writing (2.105) in the form

R =
b

zk−l
+

1

zk
, (2.106)

the cluster decomposition (2.96) can be used to deduce that, as b→ ±∞, the rational map

(2.105) describes axisymmetric monopoles of charge k − l at the positions (0, 0,± 1
2
log |b|)

and an axisymmetric charge 2l − k monopole at the origin.

The simplest example is when k = 3, in this case l must be two. The rational map is

R =
1 + bz2

z3
, (2.107)

where, −∞ < b < ∞. Setting k = 3 and l = 2 in the cluster decomposition, the geodesic

is interpreted as the following scattering event. At large negative times, there are three

well-separated monopoles which are all located on the x3-axis. One monopole is stationary

at the origin, a second monopole is on the positive x3-axis and a third monopole is on the

negative x3-axis. The second and third monopoles are equidistant from the origin and are

moving towards the stationary monopole. For large positive times, the situation is similar

but now the two monopoles which are on the positive and negative x3-axis are moving away

from the monopole at the origin. The twisted line scattering geodesic describes motion

along the x3-axis.
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(2l-k)

(k-l)

(k-l)

k (2l-k)

(k-l)

(k-l)

Figure 2.7: The Σl
k twisted line scattering as b goes from large and positive to large and

negative.

This is true of all the geodesic motions along generators on the surfaces Σl
k. They

all describe monopole scattering along a line. The initial configuration is of two (k − l)-

monopoles approaching a (2l − k)-monopole at the origin along the positive and negative

x3-axis. The final configuration is of two (k − l)-monopoles receding along the positive

and negative x3-axis leaving a (2l − k)-monopole at the origin. Figure 2.7 is a schematic

representation of this. The one-parameter family of rational maps given by (2.105) is

invariant, up to a phase change, under b → −b and z → eiπ/lz. This means that the

outgoing configurations are always like the incoming configurations but twisted by π/l

about the x3-axis. The scattering angle is zero in each case.

The S4 symmetry imposed to obtain the surface Σ2
3 is a combined reflection and π/2

rotation symmetry. The 3-monopole with tetrahedral symmetry [HMM, HS1] has S4 sym-

metry so for some value, b = bc say, (2.107) is the rational map of the tetrahedral monopole.

When b = −bc, the tetrahedral 3-monopole is again formed but this time in the orientation

dual to the previous one. So, although the asymptotic in and out monopole states may

suggest a simple scattering process, the dynamics must be relatively complicated since a

tetrahedral monopole, then an axisymmetric monopole, then another tetrahedral monopole
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are all formed during the scattering. The Nahm data are actually known in this case and

are discussed in Chapter 3.

The cubic 4-monopole has S8 symmetry and is on the surface Σ3
4. The cubic 4-monopole

is formed twice during the twisted line scattering associated with the generator on Σ3
4.

During the scattering two 1-monopoles approach an axisymmetric 2-monopole at the origin.

The axisymmetric 4-monopole is also formed between the formation of the two cubes.

There is a similar scattering through the octahedral 5-monopole. The surface Σ3
5 de-

scribes monopoles with S6 symmetry. The octahedral 5-monopole has S6 symmetry. Thus,

geodesic motion along the generator of Σ3
5 describes two 2-monopoles approaching the ori-

gin along the positive and negative x3-axis. At the origin, there is a single 1-monopole.

The monopoles coalesce to form the octahedral 5-monopole. This deforms into the toroidal

5-monopole and then into the octahedral 5-monopole rotated through π/3. It then sepa-

rates into two 2-monopoles again. They recede along the x3-axis, leaving a single monopole

at the origin.

The dodecahedral 7-monopole occurs during the geodesic scattering on the surface

Σ5
7. The scattering involves two axisymmetric 2-monopoles approaching from the positive

and negative x3-axis with an axisymmetric 3-monopole at the origin. The dodecahedral

monopole is formed, followed by the axisymmetric 7-monopole, then the dodecahedral

monopole rotated π/5 relative to the previous one. Finally, two 2-monopoles separate out

again along the x3-axis, leaving a 3-monopole behind.

2.7 Symmetry and the Jarvis rational map

Some cunning is required in choosing the symmetry when working with the Donaldson

rational map. With the Jarvis rational map, any rotational symmetry can be applied

because the construction of the rational map does not nominate a direction along which

the Hitchin scattering is performed. The problem of applying symmetry to the monopole

moduli space is just a problem of constructing symmetric Jarvis rational maps.

The Jarvis map is constructed in a similar way to the Donaldson map, except that in
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the Jarvis map the Hitchin scattering is performed along lines radiating in all directions

from a single point. These lines are parameterized by z, the inhomogeneous coordinate on

P1. The solutions to the Hitchin equation are two component functions of radial distance.

Along a given halfline from the origin the asymptotically decaying solution is projectively

unique. The ratio of the two components of this solution at the origin is the Jarvis rational

map. The space of Jarvis maps is the (4k + 2)-dimensional space of unbased degree k

rational maps. A given k-monopole is identified with the SU2 orbit of rational maps given

by the Möbius action

R(z) 7→ αR(z) + β

−β̄R(z) + ᾱ
, (2.108)

where α and β are complex numbers such that |α|2 + |β|2 = 1. This SU2 action on

the rational map corresponds to a constant SU2 gauge transformation of the k-monopole.

There is no analogous action on the Donaldson rational map since the ratio there is between

gauge invariant quantities. The action is a consequence of the need to consider halflines in

the Jarvis construction.

To construct symmetric Jarvis rational maps, it is convenient to employ homogeneous

projective coordinates x and y on the Riemann sphere, rather than the inhomogeneous

z = x/y employed elsewhere. In homogeneous coordinates, a rational map is a map from

Riemann sphere to Riemann sphere of the form

R(x, y) = (p(x, y), q(x, y)) (2.109)

where p and q are homogeneous polynomials. In the (x, y) coordinates, an SO3 rotation

in space by θ about the direction of the unit vector (n1, n2, n3) is realized by the SU2

transformation exp
(
i θ
2
n · σ

)
, whose action on the Riemann sphere is

x 7→ x′ = (d + ic)x− (b− ia)y (2.110)

y 7→ y′ = (b + ia)x + (d− ic)y

where a = n1 sin θ
2
, b = n2 sin θ

2
, c = n3 sin θ

2
and d = cos θ

2
. Furthermore, in this context,

two rational maps are equivalent if they can be mapped into each other by an SU2 trans-

formation of the target sphere, that is by a transformation of p and q of the form (2.110).

73



A rational map is symmetric under some finite group G ⊂ SU2 if G transformations of x

and y map it into an equivalent map.

A degree k homogeneous polynomial is a polynomial of the form

p(x, y) =

k∑

i=0

aix
iyk−i. (2.111)

Under SU2 transformations (2.110) of x and y, the space of degree k homogeneous poly-

nomials transforms under k + 1. This k + 1 is also a representation of any finite subgroup

G of SU2. Though irreducible as a representation of SU2 it is generally reducible as a

representation of G. It is easy to calculate the decomposition of k + 1 into irreducible

representations because in k + 1 the element exp
(
i θ
2
n · σ

)
has character

sin
(

k+1
2

)
θ

sin θ
2

(2.112)

for any n. There are tables of these reductions given in, for example, [KDWS].

Suppose two degree k homogeneous polynomials p(x, y) and q(x, y) lie in the same

two-dimensional representation of G; G transformations of x and y will then result in

GL2C transformations of (p(x, y), q(x, y)). If, further, p(x, y) and q(x, y) are orthonormal

as vectors in the k + 1 carrier space, then, projectively, the G action on x and y results

only in SU2 transformations of (p(x, y), q(x, y)). Therefore, the rational map R(x, y) =

(p(x, y), q(x, y)) is G symmetric.

This means that there is a systematic way of deciding whether there are G symmetric

maps of some degree k. The representation k + 1 is decomposed into irreducible represen-

tations of G. If

k + 1|G = E + other irreducible representations of G, (2.113)

where E is a two-dimensional irreducible representation of G, and if the basis polynomials

for E have no common factor, then there is a G symmetric degree k map. If they have

a common factor then the resulting rational map has lower degree. This occurs when the

E in k + 1 is in the product of lower degree representations; this is illustrated with an
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example below. It might also happen that

k + 1|G = A1 + A2 + other irreducible representations of G, (2.114)

where A1 and A2 are one-dimensional representations of G. In this case, there is a one-

parameter family of G symmetric rational maps: if p(x, y) is in A1 and q(x, y) is in A2 then

the family

R(x, y) = (ap(x, y), q(x, y)) (2.115)

is G symmetric. It is one parameter because a can be made real by Möbius transformation.

An example of this type is the geodesic of tetrahedral 4-monopoles. Degree four poly-

nomials transform as 5 and

5|T = AT
1 + AT

2 + F T (2.116)

The face polynomial, qF , of the tetrahedron is a basis for AT
1 . The vertex polynomial, qV ,

is a basis for AT
2 . Thus, in the usual orientation,

R(x, y) = (aqF , qV ), (2.117)

qF (x, y) = x4 − 2
√

3ix2y2 + y4, (2.118)

qV (x, y) = x4 + 2
√

3ix2y2 + y4 (2.119)

is the one-parameter family of tetrahedrally symmetric Jarvis rational maps. For a = 1

the map is octahedrally symmetric: the map

(x, y)→ (e−
iπ
4 x, e

iπ
4 y) (2.120)

sends qF to −qV and qV to −qF and is a Möbius transformation of R(x, y). This oc-

tahedrally symmetric map corresponds to the cubic 4-monopole of Sect. 2.1. Since the

tetrahedral symmetry has a one-parameter family of fixed points, there is a geodesic of

tetrahedral 4-monopoles. Such a family could not have been discovered using the Don-

aldson rational map because the group transformations do not respect the R3 = R × C

decomposition. Historically, however, the geodesic was discovered without using the Jarvis

rational map either. In [HS1] it is demonstrated that the Nahm equations only have a one-

parameter family of solutions. These solutions to the Nahm equations allow the monopoles

to be plotted using the numerical ADHM construction. This is discussed in Chapter 3.
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In the degree four example above, the symmetric polynomials are easy to find, they

are bases of one-dimensional representations of low degree. Higher charge cases are more

difficult. The case of tetrahedrally symmetric degree seven maps is a good example of how

symmetric Jarvis rational maps can be calculated in general.

Under restriction to T

8|T = 2E ′T + G′T , (2.121)

that is, two two-dimensional irreducible representations of T occur in the decomposition

of 8. Furthermore, there is an arbitrariness in the decomposition

2E ′T = E ′T + E ′T , (2.122)

and this allows a one-parameter family of tetrahedrally symmetric rational maps to be

constructed.

The tetrahedral group is both a subgroup of the octahedral group O and a subgroup

of the icosahedral group Y . 8 is decomposed as a representation of Y and of O,

8|O = E ′O
1 + E ′O

2 + G′O, (2.123)

8|Y = E ′Y
2 + I ′Y . (2.124)

These representations decompose further by restriction to T

E ′O
1 |T = E ′T , (2.125)

E ′O
2 |T = E ′T ,

G′O|T = G′T

and

E ′Y
2 |T = E ′T , (2.126)

I ′Y |T = E ′T + G′T .

In this way, T has two identical two-dimensional irreducible representations in 8. O also has

two but they are different and Y only has one. The carrier spaces of these representations
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are two-dimensional subspaces of the carrier space of 8: a space which is realised as degree

seven homogeneous polynomials. The symmetric rational maps that are to be calculated

can be constructed from the bases of the two-dimensional spaces.

There are simple and venerable methods for calculating such bases explicitly. They are

explained in Serre’s book [Se]. U , a reducible representation of a group G, is considered,

G → GL(U), (2.127)

g 7→ ρ(g),

which decomposes into irreducible representations Vi,

U = V1 + . . . + V1 + V2 + . . . + V2 + . . . . . . + Vh + . . . + Vh (2.128)

= W1 + . . . + Wh

where

Wi = Vi + Vi + . . . + Vi. (2.129)

If the irreducible representation Vi has character χi(g) for g ∈ G, and ni = dimWi, then

Pi =
ni

|G|
∑

g∈G

χi(g)?ρ(g) (2.130)

is the projection operator

Pi : U →Wi. (2.131)

Using MAPLE, these projection operators can be calculated.

Since E ′T appears twice in 8|T , projection onto E ′T gives a four-dimensional space. To

work out a basis for this space, the projection operator

P : 8→ 2E ′T (2.132)

must be calculated using (2.130). The T ⊂ SU2 transformations of (x, y) are first calculated

explicitly. In the orientation where each edge of the tetrahedron has its midpoint on a

Cartesian axis, the C2 element about the x3-axis has c = −1 and a = b = d = 0, and
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hence,

x′ = −ix, (2.133)

y′ = iy.

The C3 element about the x1 = x2 = x3 axis has a = b = c = d = 1/2, and hence,

x′ =
1 + i

2
x +

1− i

2
y, (2.134)

y′ = −1 + i

2
x +

1− i

2
y.

These two transformations generate T and so expressions for the (x, y) transformations can

be calculated for all 24 elements of T . Using MAPLE, the effects of these transformations

on degree seven polynomials are calculated determining the 8 × 8 matrices ρ(g) for each

element g ∈ T and, using (2.130), the projection operator P . The polynomials in the image

of P are

p1(x, y) = −7x4y3 − y7, (2.135)

p2(x, y) = x7 + 7x3y4,

p3(x, y) = x6y − x2y5,

p4(x, y) = x5y2 − xy6.

This particular basis is chosen because it is convenient for what follows.

From (2.125), it follows that two different representations of the octahedral group O lie

in this four-dimensional space. In the usual orientation, O is generated by T and the C4

rotation around the x3-axis:

x′ =
1 + i√

2
x, (2.136)

y′ =
1− i√

2
y

and so the projection operators for E ′O
1 and E ′O

2 can be calculated. It is found that p1(x, y)

and p2(x, y) are a basis for E ′O
1 and p3(x, y) and p4(x, y) are a basis for E ′O

2 . The rational

map

R(x, y) = (p1(x, y), p2(x, y)) (2.137)
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is, therefore, octahedrally symmetric. However, p3(x, y) and p4(x, y) have a common factor

and the corresponding rational map is spurious; it is not of degree seven. This is not

surprising. The one-dimensional representation AO
2 in 7|O = AO

2 + F O
1 + F O

2 has basis

x5y−xy5, the two-dimensional representation 2|O = E ′O
1 has basis x, y, and AO

2 ×E ′O
1 = E ′O

2 .

T is also a subgroup of Y . In fact, for our choice of orientation of the tetrahedral group,

there are two possible icosahedral groups with it as a subgroup. The group Y is generated

by T and a C5 element. The two choices of Y correspond to adding a C5 rotation about

the radial line passing through (−1, 0, τ) or about the line passing through (1, 0, τ), where

τ = (1 +
√

5)/2. The two possibilities are related by a rotation by π/2 about the x3-axis.

The E ′Y
2 has basis p1(x, y)± (7/

√
5)p3(x, y) and p2(x, y)± (7/

√
5)p4(x, y); the sign depends

on the choice of C5 element.

2E ′T decomposes into E ′T + E ′T . Luckily, such decompositions are discussed in [Se]

where the following construction is presented. Some general reducible representation U is

considered, where, as in (2.128),

U = W + other irreducible representations of G (2.138)

and W is the sum of m identical irreducible representations V ,

W = mV. (2.139)

Let n = dimV . In V each g ∈ G is represented by an n × n matrix, say r(g). From

these the projection operators

Pαβ =
n

|G|
∑

g∈G

rαβ(g−1)ρ(g) (2.140)

are calculated. Here α and β are simply the matrix indices of r. Now Pαα projects onto

an m-dimensional space: Ωα. W can be expressed as the direct sum

W = Ω1 + Ω2 + . . . + Ωn. (2.141)

Furthermore, the map Pβα is an isomorphism from Ωα to Ωβ and vanishes on all Ωγ for

γ 6= α. If (ω1, ω2, . . . , ωm) is a basis for Ω1 then the space spanned by

Yν = (ων, P21(ων), P31(ων), . . . , Pn1(ων)) (2.142)
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is isomorphic to V and

W = Y1 + Y2 + . . . + Ym (2.143)

is a decomposition of W of the form (2.139). Choosing a particular decomposition is

equivalent to choosing a particular basis (ω1, ω2, . . . , ωm) for the space Ω1.

The space W = 2E ′T is spanned by the polynomials (2.135). Using MAPLE, the pro-

jection operators P11 and P21 are constructed. It is found that the space P11 : W → Ω1

is spanned by p1 and p3. Choosing a vector p1 + bp3 in this space defines a particular

E ′T ⊂ 2E ′T . P21 is used to derive the one-parameter family of tetrahedrally symmetric

rational maps

R(x, y) = (p1 + bp3, p2 + bp4) (2.144)

or, in inhomogenous coordinates,

R(z) =
bz6 − 7z4 − bz2 − 1

z(z6 + bz4 + 7z2 − b)
, (2.145)

where b is complex. For b = 0, there is octahedral symmetry. For b = ±7/
√

5, there is

icosahedral symmetry.

2.7.1 The tangent space to a symmetric monopole

The rotational SO3 action on the moduli space Mk induces an action on its tangent

bundle TMk. Under the action of g ∈ SO3 a point m in Mk is mapped to the point gm

corresponding to the rotated k-monopole. In the same way, a curve γ through m is mapped

to another curve gγ through gm. The vector in TmMk tangent to γ is mapped under the

SO3 action on TMk to the vector in TgmMk tangent to gγ. However, if m corresponds to

a G symmetric k-monopole and g ∈ G then gm = m and a vector in TmMk is mapped to

another vector in TmMk. Thus, the dodecahedral 7-monopole is a point in the 7-monopole

moduli space and this point is fixed by the icosahedral group. As a consequence, the SO3

action on TM7 defines an icosahedral action on the tangent space to the dodecahedral

7-monopole and the tangent vectors transform under a representation of the icosahedral

group.
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Generally, the tangent space to a G symmetric k-monopole transforms under a repre-

sentation of G. This subsection describes this representation. It is calculated using the

Jarvis rational map description.

A degree k rational map, R = (p0, q0), is G symmetric when p0 and q0 span a two-

dimensional representation of G inside k + 1. This means that acting with g ∈ G on (x, y)

has the effect of transforming (p0, q0) by some 2 × 2 matrix Dg. Put another way, the

g transformation of (x, y) followed by the D−1
g transformation of the rational map leaves

(p0, q0) unchanged. To find the transformation properties of tangent vectors in T(p0,q0)Mk,

a general (p, q) = (p0 + δp, q0 + δq) is transformed in this way.

A general homogeneous polynomial transforms under G in the representation k + 1|G.

The Dg representation is the two-dimensional representation in k + 1|G corresponding to

R. The D−1
g representation E can be calculated from this. Transforming p and q under

k + 1|G and then under E is a k + 1|G×E transformation of (p, q), where (p, q) is regarded

as a (2k+2)-dimensional vector. Thus, to find the transformation properties of the tangent

vectors, k + 1|G × E must be decomposed into irreducible representations of G.

In the case of the dodecahedral 7-monopole

8|Y = E ′Y
2 + I ′Y . (2.146)

The dodecahedral 7-monopole corresponds to E ′Y
2 . That is the representation of the Dg’s

mentioned above. All elements of Y lie in the same conjugacy class as their inverses, so

the D−1
g representation is also E ′Y

2 . Each character of 8|Y ×E ′Y
2 is obtained by multiplying

the corresponding one for 8|Y with that for E ′Y
2 . The characters are known and the

decomposition is

8|Y × E ′Y
2 = AY + F Y

1 + F Y
2 + GY + HY . (2.147)

There are copies of this decomposition corresponding to real variations and to imaginary

variations. This means that the variations around the 7-monopole transform as 2AY +

2F Y
1 + 2F Y

2 + 2GY + 2HY . The 2AY are the trivial variations caused by multiplying the

icosahedral p0 and q0 by the same constant. The Mobius transformations account for an

F Y
2 . Thus, the action decomposes in the irreducible components 2F Y

1 + F Y
2 + 2GY + 2HY .
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The vector representation of the icosahedral group is F Y
1 so translations and rotations

account for 2F Y
1 . The vectors carrying F Y

2 + 2GY + 2HY are tangent to curves which

actually deform the monopole.
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Chapter 3

Elliptic solutions to the Nahm

equations

In the previous chapter the Nahm equations were solved for the octahedral 5-monopole

and dodecahedral 7-monopole. These solutions to the Nahm equations are elliptic. In the

first chapter, the 2-monopole case was discussed, it was argued that the Nahm equations

have elliptic solutions because the 2-monopole spectral curve is genus one.

Neither the 5-monopole nor the 7-monopole have genus one spectral curves, but the

Nahm equations have elliptic solutions. The explanation for this is given in [HMM]. A 3-

monopole has a genus four spectral curve. However, the spectral curve, P , of the tetrahedral

3-monopole is acted on by the tetrahedral group, T . The genus of the quotient curve, P/T ,

can be calculated using the Riemann-Hurwitz relation (1.35). It is genus one. In fact, in

each of the cases considered, the quotient curve is genus one and this is why these cases

are tractable. The solutions to the Nahm equations are elliptic because the spectral curves

are effectively genus one.

In this chapter, some attempt is made to exhaust the list of such monopoles. This

leads to two interesting families of monopoles. The first is the one-parameter family of

tetrahedrally symmetric 4-monopoles introduced in [HS1]. In the geodesic approximation,

the four monopoles approach each other on the vertices of a contracting tetrahedron and

scatter through the cubic configuration.
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The second family are 3-monopoles with D2 symmetry. In Sect. 3.3, the space of such

monopoles is described using the Jarvis description. The Nahm data are derived, they are

parameterized by constants appearing in the spectral curve. Inside the space of D2 sym-

metric monopoles are 3-monopoles with still higher symmetry: there are one-parameter

families with twisted line symmetry and with inversion symmetry. In the geodesic approx-

imation, these one-parameter families describe scattering processes.

All 3-monopoles with inversion symmetry are D2 symmetric. In Sect. 3.4, the moduli

space of inversion symmetric 3-monopoles is proved to be an Atiyah-Hitchin submanifold

of the 3-monopole moduli space. This allows what is known about 2-monopole dynamics

to be translated into results about the dynamics of 3-monopoles. Using the numerical

ADHMN construction, the monopole energy density is plotted on two geodesics. The first

is a geodesic corresponding to right angle scattering. This geodesic has D2 symmetry about

a fixed set of axes. The second is a closed geodesic for three orbiting monopoles.

Twisted line scattering is discussed in Sect. 3.5. In the 3-monopole case, the Nahm data

are known since S4 symmetric 3-monopoles are D2 symmetric. The numerical ADHMN

construction is used to compute the energy density at various times during this motion.

The dynamics of the zeros of the Higgs field are rich; there exist 3-monopoles with more

than three zeros of the Higgs field. This is discussed in Sect. 3.6. Historically, Higgs

anti-zeros were first observed in this example.

3.1 The genus one cases

The D2 group is the viergruppe of π rotations about orthogonal axes. Choosing the

orthogonal axes to be the Cartesian axes, D2 is generated on TP1 by

Cz
2 : (η, ζ) 7→ (−η,−ζ) (3.1)

and

Cx
2 : (η, ζ) 7→ (− η

ζ2
,
1

ζ
). (3.2)
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The spectral curve of a D2 symmetric 3-monopole, P , must be symmetric under these

transformations and, hence, of the form,

η3 + [r1(ζ
4 + 1)− r2ζ

2]η + c1(ζ
5 − ζ) = 0, (3.3)

where r1 and r2 are real and c1 is imaginary. D2 acts freely on those points on this curve

with nonzero η. There are six points on the curve where η = 0, they are ζ = 0, ζ = ∞,

ζ = ±1 and ζ = ±i; the solutions of

ζ5 − ζ = 0. (3.4)

Each of these points is fixed by two elements of D2 and so has branching number one. The

whole action has branching number six. The curve has genus four and so the factor 2− 2g

on the left hand side of the Riemann-Hurwitz relation (1.35) cancels with the −B on the

right hand side and the factored curve P/D2 has genus one.

This calculation can be done for the spectral curve P of a general Dk−1 symmetric

k-monopole. If k is even, then P/Dk−1 has genus k
2
. If k is odd it has genus k−1

2
. This

means that the only cases where P/Dk−1 has genus one are 2-monopoles and 3-monopoles.

The same applies to Dk; the factored curve only has genus one for 2-monopoles and 3-

monopoles.

To reduce the charge four curve to genus one, a larger symmetry group is required. A

T symmetric 4-monopole has spectral curve, P , of the form

η4 + c1(ζ
5 − ζ)η + r1(ζ

8 + 14ζ4 + 1) = 0. (3.5)

The only points on this curve fixed by the T action have η = 0. As a consequence ζ solves

ζ8 + 14ζ4 + 1 = 0. (3.6)

These are the vertex and face points of a tetrahedron. Each has branching number two

and so the total branching number is sixteen. The Riemann-Hurwitz relation implies the

genus of P/T is one.
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The octahedral 5-monopole and icosahedral 7-monopoles of Chapter 2 are more sub-

tle. In both of these cases, the symmetric spectral curves are reducible. A octahedrally

symmetric 5-monopole curve, P , has the form

η[η4 + c1(ζ
5 − ζ)η + r1(ζ

8 + 14ζ4 + 1)] = 0. (3.7)

The η4 + c1(ζ
5 − ζ)η + r1(ζ

8 + 14ζ4 + 1) = 0 factor is genus one when it is divided by the

octahedral group. The η = 0 factor is a sphere. The two factors touch at the faces point

of the octahedron. The octahedral group acts transitively on these points and so in P/O

they touch at just one point. Thus, P/O is a reducible curve in which a sphere touches a

torus at a single point and so the Nahm equations have elliptic solutions. The icosahedral

7-monopole case is similar.

From the Jarvis rational map the only tetrahedrally symmetric 5-monopole is the oc-

tahedral 5-monopole. Furthermore, there is no tetrahedral 6-monopole. The most general

T and O symmetric 7-monopole curves are not genus one curves after division. The next

icosahedral monopole after the dodecahedral 7-monopole is charge eleven. The most gen-

eral icosahedral 11-monopole curve is not genus one after division. The reducible curve of

the form

η5[η6 + rζ(ζ10 + 11ζ5 − 1)] = 0 (3.8)

is genus one after division. However, this is only one of a family of possible icosahedral

degree eleven algebraic curves. Since it is not known which curve the 11-monopole cor-

responds to, the fact (3.8) is genus one after division does not demonstrate the Nahm

equations will have elliptic solutions.

The arguments above apply only to the most general algebraic curves of the correct

form with given symmetry. Because of this, there may be cases beyond those listed where

the Nahm equations have elliptic solutions. There is an example of this known; although

D2 monopoles of charge higher than three do not, in general, have spectral curves such

that P/D2 is genus one, the curves corresponding to the subfamily of 2-monopole-like

k-monopoles discovered by Bielawski do [Bi2].
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3.2 Tetrahedral 4-monopoles

The existence of a tetrahedral 4-monopole geodesic is proved in Sect. 2.7. It is noted

in the previous section that the Nahm equations have elliptic equations in this case. Here,

the Nahm data are constructed using the same methods as in Chapter 2.

The lowest degree T invariant polynomial is of degree six. It is

ζ5
1ζ0 − ζ1ζ

5
0 . (3.9)

There is a degree eight T -invariant polynomial

ζ8
1 + 14ζ4

1ζ
4
0 + ζ8

0 , (3.10)

which is also invariant under the octahedral group. Therefore, there are T invariant Nahm

triplets lying in the 9u representation and in both the 7 representations.

A basis for 7 is;

X =




0
√

3 0 0

0 0 2 0

0 0 0
√

3

0 0 0 0




, Y =




0 0 0 0
√

3 0 0 0

0 2 0 0

0 0
√

3 0




, H =




3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3




. (3.11)

Polarizing (3.9) yields

ξ2
1 ⊗ (20ζ3

1ζ0) + 2ξ1ξ0 ⊗ (5ζ4
1 − 5ζ4

0 )− ξ2
0 ⊗ (20ζ1ζ

3
0), (3.12)

which is rewritten as

ξ2
1 ⊗ 5(ζ0

∂

∂ζ1
)ζ4

1 + (ξ0
∂

∂ξ1
)ξ2

1 ⊗ [5− 5

24
(ζ0

∂

∂ζ1
)4]ζ4

1

+
1

2
(ξ0

∂

∂ξ1
)2ξ2

1 ⊗ [−5

6
(ζ0

∂

∂ζ1
)3ζ4

1 ] (3.13)

and converted to 4× 4 matrices

X ⊗ 5adY X2 + adY X ⊗ [5− 5

24
(adY )4]X2 +

1

2
(adY )2X ⊗ [−5

6
(adY )3]X2. (3.14)
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These matrices are calculated explicitly using MAPLE and are proportional to

Z1 =




0 2
√

3 0 0

0 0 0 0

0 0 0 −2
√

3

0 0 0 0




, Z2 =




0 0
√

3 0

0 0 0
√

3

−
√

3 0 0 0

0 −
√

3 0 0




,

Z3 =




0 0 0 0
√

3 0 0 0

0 0 0 0

0 0 −
√

3 0




. (3.15)

Polarizing the O invariant (3.10) yields

ξ2
1 ⊗ (56ζ6

1 + 168ζ2
1ζ

4
0) + 2ξ1ξ0 ⊗ (224ζ3

1ζ
3
0) + ξ2

0 ⊗ (168ζ4
1ζ

2
0 + 56ζ6

0), (3.16)

which becomes

ξ2
1 ⊗ [56 +

7

15
(ζ0

∂

∂ζ1

)4]ζ6
1 + (ξ0

∂

∂ξ1

)ξ2
1 ⊗

28

15
(ζ0

∂

∂ζ1

)3ζ6
1

+
1

2
(ξ0

∂

∂ξ1
)2ξ2

1 ⊗ [
28

5
(ζ0

∂

∂ζ1
)2 +

7

90
(ζ0

∂

∂ζ1
)6]ζ6

1 (3.17)

and, thus, the invariant Nahm triplet

Y1 =




0 0 0 −20

4
√

3 0 0 0

0 −12 0 0

0 0 4
√

3 0




, Y2 =




−4 0 0 0

0 12 0 0

0 0 −12 0

0 0 0 4




,

Y3 =




0 −2
√

3 0 0

0 0 6 0

0 0 0 −2
√

3

10 0 0 0




. (3.18)
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The T invariant in 7m is calculated by constructing an isomorphism between 7m and

7u. It is

[5(adY ⊗ 1 + 1⊗ adY )− 1

24
(adY ⊗ 1 + 1⊗ adY )5](adY X ⊗X3 − 1

3
X ⊗ adY X3)

= X ⊗ (−5

3
(adY )2 +

1

72
(adY )6)X3 + adY X ⊗ (

10

3
adY +

1

36
(adY )5)X3

+(adY )2X ⊗ (5− 5

72
(adY )4)X3 (3.19)

with corresponding matrices

W1 =




0 −2
√

3 0 0

0 0 6 0

0 0 0 −2
√

3

−6 0 0 0




, W2 =




0 0 2
√

3 0

0 0 0 −2
√

3

2
√

3 0 0 0

0 −2
√

3 0 0




,

W3 =




0 0 0 3
√

3 0 0 0

0 −3 0 0

0 0
√

3 0




. (3.20)

The basis change (2.33) is made:

(Y1, Y2, Y3)→ (Y ′
1 , Y

′
2 , Y

′
3) = (

1

2
Y1 + Y3,−

i

2
Y1 + iY3,−iY2) (3.21)

and similarly for (Z1, Z2, Z3) and (W1, W2, W3). The primes are dropped on the transformed

quantities.

The commutation relations satisfied by the invariant Nahm vectors are calculated using
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MAPLE;

[Y1, Y2] = −48ρ3 − 8Y3, [Z1, Z2] = 6
5
ρ3 + 3

5
Y3,

[W1, W2] = 12
5
ρ3 + 6

5
Y3, [ρ1, Y2] + [Y1, ρ2] = −6Y3,

[ρ1, Z2] + [Z1, ρ2] = −4Z3, [ρ1, W2] + [W1, ρ2] = 2W3,

[Y1, Z2] + [Z1, Y2] = −32Z3, [Z1, W2] + [W1, Z2] = 0,

[Y1, W2] + [W1, Y2] = 16W3.

(3.22)

Writing

Ti(t) = x(t)ρi + y(t)Yi + z(t)Zi + w(t)Wi (3.23)

the reduced Nahm equations are

dx

dt
= 2x2 − 48y2 +

6

5
z2 +

12

5
w2, (3.24)

dy

dt
= −8y2 +

3

5
z2 +

6

5
w2 − 6xy, (3.25)

dz

dt
= −4xz − 32yz, (3.26)

dw

dt
= 2xw + 16wy. (3.27)

The spectral curve is

η4 + c1ηζ(ζ4 − 1) + c1c2(ζ
8 + 14ζ4 + 1) = 0, (3.28)

where

c1 = 288z(x2 + 4y2 + 3w2 − 4xy) ≡ 288ic′1 (3.29)

and

c2 = − 48

288z
(60y2 + 3z2 − 3w2 + 20xy) ≡ 48

288
ic′2 (3.30)

are constants.
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The equations are simplified by setting w to zero and letting u = x−2y and v = x+8y

to get
du

dt
= 2uv, (3.31)

z = i
c′1
u2

(3.32)

and

c′2 =
u2

c′1

[
v2 − u2 − 3c′21

u4

]
. (3.33)

Define κ4 ≡ −16c′1c
′
2 and a ≡ 8c′1/κ

3 to obtain

4
du

ds
= −
√

64u4 − 4κ4 + 3a2κ6u−2. (3.34)

Let s = κ(t + 1) and u(t) = −κ
√

℘(s)/2 giving

(
κ2

√
℘

d℘

ds

)2

= 4κ4

(
℘2 − 1 +

3a2

℘

)
, (3.35)

so that ℘(s) is the Weierstrass function satisfying

(
d℘

ds

)2

= 4℘3 − 4℘ + 12a2. (3.36)

Hence (3.24)-(3.27) are solved by

x =
κ

5

(
−2
√

℘ +
1

4

1

℘

d℘

ds

)
, (3.37)

y =
κ

20

(√
℘(κs) +

1

2

1

℘(κs)

d℘

ds

)
, (3.38)

z =
iaκ

2℘
, (3.39)

w = 0. (3.40)

In order to determine that these Nahm data correspond to a monopole, the boundary

conditions must be examined. As t→ −1,

x ∼ − 1

2(t + 1)
, (3.41)

y ∼ 0,

z ∼ 0.
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Therefore, at t = −1 the residues of Ti are −1
2
ρi and, so, form an irreducible representation

of su2. If κ = ω1 there is a second pole at t = 1. The residues here also form an irreducible

representation of su2 demonstrating the existence of a one parameter family of monopoles

with spectral curves

η4 + i36aκ3ηζ(ζ4 − 1) + 3κ4(ζ8 + 14ζ4 + 1) = 0. (3.42)

The spectral curve of a 1-monopole with position (x1, x2, x3), (1.45), is

η − (x1 + ix2) + 2x3ζ + (x1 − ix2)ζ
2 = 0.

The product of four spectral curves corresponding to four monopoles positioned at the

vertices

{(+b, +b, +b), (+b,−b,−b), (−b,−b, +b), (−b, +b,−b)} (3.43)

of a regular tetrahedron (where b > 0) is

η4 − 16ib3η(ζ5 − ζ) + 4b4(ζ8 + 14ζ4 + 1) = 0. (3.44)

The spectral curve (3.42) has this form when

a = −3−5/4
√

2. (3.45)

Examination of the integral expression for κ

κ =

∫ X

0

dx√
1− x4 + 3a2x6

, (3.46)

where X is the first positive real root of 0 = 1 − x4 + 3a2x6, shows that κ → ∞ as a →
±3−5/4

√
2 but it is finite for a ∈ (−3−5/4

√
2, 3−5/4

√
2). Thus, as a approaches −3−5/4

√
2,

(3.42) describes the superposition of four well-separated monopoles on the the vertices of a

tetrahedron (3.43), with the distance between monopoles equal to 31/4κ. The tetrahedron

dual to the one above, has vertices

{(−b,−b,−b), (−b, +b, +b), (+b, +b,−b), (+b,−b, +b)} (3.47)

with a corresponding product of spectral curves given by

η4 + 16ib3η(ζ5 − ζ) + 4b4(ζ8 + 14ζ4 + 1) = 0. (3.48)
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Figure 3.1: Schematic representation of 4-monopole scattering.

Clearly this is the form of the spectral curve (3.42) when a = 3−5/4
√

2.

If a = 0 then z = 0 and κ is given by

κ =

∫ 1

0

dx√
1− x4

=
Γ(1/4)2

4
√

2π
, (3.49)

so that the spectral curve becomes that of the cubic 4-monopole given by (2.17).

This 1-parameter family is a geodesic in the 4-monopole moduli space. It corresponds

to a tetrahedral scattering process. Figure 3.1 is a schematic representation of this pro-

cess. The cube has centre at the origin and edges parallel to the coordinate axes; it is

to be associated with the cubic 4-monopole. The incoming monopoles are represented by

black spheres and the outgoing monopoles by white spheres, with an arrow indicating the

direction of motion for each.

To obtain a true picture of the scattering process, energy density plots are needed. This

can be done using the numerical scheme. Figure 3.2 shows a surface of constant energy

density for the five values a = −0.25, −0.18, 0.00, 0.18, +0.25. The energy density is

initially localized in four regions, roughly centred on the vertices of a tetrahedron. These

vertices are opposite corners of a cube as in Fig. 3.1. On any one face of the cube, the

incoming energy density is concentrated on two opposite corners of the face, the black

spheres in Fig. 3.1. It flows around the edges of the face until it is localized on the other
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Figure 3.2: Tetrahedral 4-monopole scattering; surface of constant energy density for values

(1) a = −0.25, (2) a = −0.18, (3) a = 0.00, (4) a = 0.18, (5) a = 0.25.
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two corners, the white spheres in Fig. 3.1, as the monopoles separate.

Historically, this was the first higher charge monopole geodesic for which the Nahm

data was explicitly known. Sutcliffe has subsequently calculated the metric numerically

along the geodesic [Su]. An analytic expression for this metric was then provided by Braden

and Sutcliffe [BrS]. Geodesics in the two-dimensional space of tetrahedral (4,[3],[2],[1])-

monopoles have even been calculated numerically [HS5].

3.3 D2 3-monopoles

The space of D2 symmetric 3-monopoles is two dimensional. This follows from the

Jarvis rational maps description. D2 is generated by

Cz
2 : z 7→ −z (3.50)

and

Cx
2 : z 7→ 1

z
. (3.51)

The Jarvis rational map that is symmetric under these transformations is

R(z) =
αz2 − 1

z(z2 − α)
, (3.52)

where α is complex. This rational map degenerates when α = ∞ or α = ±1. At these

points, one monopole is infinitely far along each direction of a Cartesian axis and the third

is at the origin.

There are exceptional values of α where the symmetry is larger than D2. The obvious

example is α = 0 where

R(z) = − 1

z3
(3.53)

and has axial symmetry about the x3-axis. There is axial symmetry about the x1-axis if

α = −3 and about the x2-axis if α = 3.

If α is real, the rational map is symmetric under inversion. In this case, the 3-monopoles

have the same symmetries as 2-monopoles. Since this one-parameter family is obtained by

applying symmetry, it is geodesic in the moduli space. The point α = ∞ is the same as
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Figure 3.3: Head-on scattering geodesics. The crosses are degenerate maps and the dots

are axially symmetric maps.

α = −∞ and the one-parameter family is represented by a circle in Fig. 3.3. Around the

circle are three points with axial symmetry and three degenerate points. Geodesics run

from one degenerate point, through a point with axial symmetry and then on to another

degenerate point. The geodesics correspond to π/2 scattering of two monopoles incident

on a third. They mimic the classic 2-monopole head-on scattering geodesics, except there

is an extra monopole at the origin.

If α is imaginary, the rational map is symmetric under the S4 rotary-reflection in the

x3-axis. This transformation is a rotation of π/2 about the x3-axis followed by a reflection

in the x1x2-plane and is

z 7→ i

z̄
. (3.54)

It intersects the α real geodesic at the torus α = 0. If α = ±
√

3i, then there is an additional

C3 symmetry

z 7→ iz + 1

−iz + 1
(3.55)

about x1 = x2 = x3. Along with the D2 symmetry, this generates the tetrahedral group

and so these points are the tetrahedral 3-monopole. A C4 rotation about any Cartesian
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Figure 3.4: The α-sphere of D2 symmetric rational maps. Crosses denote degenerate maps,

dots denote axially symmetric maps and triangles denote the tetrahedral maps.

axis swops α =
√

3i and α = −
√

3i and each possibility is just the dual of the other. This

geodesic is one of the twisted line scattering geodesics discussed in Sect. 2.6. Monopoles

approach along the x3-axis, coalesce to form a tetrahedron, then a torus and finally the

dual tetrahedron, before separating again along the same axis. These are also twisted

line scattering geodesics in the x1-axis with |α|2 + 2Re(α) = 3 and in the x2-axes with

|α|2 − 2Re(α) = 3.

In Fig. 3.4, α is represented by a sphere and the various exceptional values are marked.

The α real circle of Fig. 3.5 is the horizontal equator. The other great circle is the geodesic

of twisted line scattering in the x3-axis. The northern hemisphere of this sphere is drawn

as a disc in Fig. 3.5. The diameters are the northern halves of each of the twisted line

scattering lines. Each wedge of the disk is mapped to each of the others by tetrahedral

and S4 transformations. The southern hemisphere of Fig. 3.4 is related to the northern

hemisphere by inversion. In this sense, the shaded wedge is typical of all twelve wedges.
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Figure 3.5: The northern hemisphere of the α-sphere.

The Nahm data for D2 symmetric 3-monopoles are calculated using the usual methods

and are

T1 =
f1

2




0 i
√

2e−iθ1 0

i
√

2eiθ1 0 i
√

2eiθ1

0 i
√

2e−iθ1 0


 , (3.56)

T2 =
f2

2




0
√

2eiθ2 0

−
√

2e−iθ2 0
√

2e−iθ2

0 −
√

2eiθ2 0


 ,

T3 =
f3

2




−2i cos θ3 0 −2 sin θ3

0 0 0

2 sin θ3 0 2i cos θ3


 ,

where the fi’s and the θi’s are functions of t. Substituting these data into the Nahm

equations gives
dF1

dt
= F̄2F̄3 (3.57)

and two others by cyclic permutation, where Fi = eiθifi. These equations are similar to

the Euler-Poinsot equations.

98



It was solved some time ago in a paper about the propagation of light in a nonlinear

dielectric [ABDP]. Equation (3.57) is rewritten as

df3

dt
+ i

dθ3

dt
= f1f2e

−(θ1+θ2+θ3) (3.58)

and two others by cyclic permutation. Writing θ = θ1 + θ2 + θ3 the real and imaginary

equations are given by cyclic permutations of

df3

dt
= f1f2 cos θ, (3.59)

dθ3

dt
= −f1f2 sin θ, (3.60)

The Lax curve calculated from the Nahm data are

η3 − 2[Aζ4 + 2Bζ2 + A]η + 4iΓ(ζ5 − ζ) = 0, (3.61)

where

A =
1

2
(f 2

1 − f 2
2 ), (3.62)

B = −1

2
(f 2

1 + f 2
2 − 2f 2

3 ),

Γ = Im(F1F2F3) = f1f2f3 sin θ

are constants.

The Nahm equations are solved explicitly by drawing the θ triangle. Hence,

f1f2f3 cos θ =
√

(f1f2f3)2 − Γ2 (3.63)

and so from (3.59)
df 2

i

dt
= 2

√
(f1f2f3)2 − Γ2 (3.64)

for i = 1, 2 or 3. Substituting q3 = f 2
3 − 2B

3
into the i = 3 equation puts it into Weierstrass

elliptic form (
d

ds
q3

)2

= 4q3
3 − g2q3 − g3. (3.65)

where g2 = 4(A2 + B2

3
), g3 = 4(2

3
A2B − 2

27
B3 + Γ2) and s = t + 1.
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This form is preserved under the scaling transformation q3(s) = Cq′3 and s = s′/
√

C.

Under this transformation, (3.65) becomes

(
d

ds′
q′3

)2

= 4q′ 33 − g′
2q

′
3 − g′

3, (3.66)

where g′
2 = C2g2 and g′

3 = C3g3. In the case where f 2
1 ≤ f 2

2 < f 2
3 , C = 1/B > 0 is used to

obtain

g′
2 = 4(x2 +

1

3
), (3.67)

g′
3 = −4(

2

3
x2 − 2

27
− y2),

where x = A/B and y = Γ/
√

B3.

The scale, B, is set by the requirement that the second pole lies at t = 1 and, so, x

and y parameterize the solutions to the Nahm equations in the f 2
1 ≤ f 2

2 < f 2
3 sector. The

function f3 is now known, it is

f 2
3 = B(℘(s′) +

2

3
), (3.68)

where ℘(s′) is the Weierstrass function satisfying

(
d℘(s′)

ds′

)2

= 4℘(s′)− g′
2℘(s′)− g′

3, (3.69)

g′
2 and g′

3 are given in (3.67) and s′ =
√

Bs. The other two fi’s are related to this one by

(3.62). The angles are given by integrating (3.60). Substituting for sin θ, these equations

are
dθi

ds
=
−Γ

fi
. (3.70)

The poles of ℘(s′) are order two and at such poles sin θ = 0. The matrix residues are an

irreducible representation of su2. Thus the Nahm boundary conditions are satisfied if the

poles are at s = 0 and s = 2. This is the case if B = ω2
1, where 2ω1 is the the real period

of the Weierstrass function.

In terms of x > 0 and y > 0, the spectral curve is

η3 − 2ω2
1(xζ4 + 2ζ2 + x)η + 4iω3

1y(ζ5 − ζ) = 0. (3.71)
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This curve has D2 symmetry. For certain values of x and y the spectral curve has further

symmetries. By observing which values correspond to which symmetries it is possible to

locate this sector of Nahm data on the whole sphere of D2 3-monopoles.

If x = 0, this curve has S4 symmetry in the x3-axis:

(η, ζ) 7→ (
−iη̄

ζ̄2
,
i

ζ̄
). (3.72)

If x = 1, the curve has S4 symmetry in the x2-axis:

(η, ζ) 7→ (
2η̄

(1− ζ̄)2
,
ζ̄ + 1

1− ζ̄
). (3.73)

If y = 0, the curve is symmetric under reflections in the Cartesian planes.

At the point x = 0 and y = 0, the Weierstrass function has infinite real period. This

point corresponds to infinite separation along the x3-axis. The spectral curve factorizes

into three stars at this point;

η(η + 2ω1ζ)(η − 2ω1ζ) = 0 (3.74)

and since 2ω1 is the real period it is infinite. Finally, at x = 1 and y = 0 the spectral

curve is axially symmetric about the x2-axis. Treating the B = 0 case separately shows

that y =∞ corresponds to the tetrahedron.

Thus, the region 0 ≤ x ≤ 1, y ≥ 0 is the shaded wedge in Fig. 3.5. Figure 3.6 is a

picture of the (x, y) region. The curve of zero discriminant is also drawn. The discriminant

is

∆ = g3
2 − 27g2

3 (3.75)

and when ∆ = 0 one of the periods is infinite; in the case of the line in Fig. 3.6 the

imaginary period is infinite. The Weierstrass function with infinite imaginary period is

℘(s′) = −Y

3
+

Y

sin2
√

Y s′
, (3.76)

and g2 = 4
3
Y 2 and g2 = 8

27
Y 3. These equations can be solved for x and y and the spectral

curve for these monopoles can be written down exactly, it is

η3 − π2

2Y

[
Y 2 − 1

3
(ζ4 + 1) + 2ζ2

]
+

iπ3

27Y
3

2

[Y 2(Y − 3) + 4](ζ5 − ζ) = 0 (3.77)
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Figure 3.6: The (x, y) region corresponding to the shaded wedge in Fig. 3.5.

where 1 ≤ Y ≤ 2. The significance of this exceptional class of monopoles is unclear. It

is suggested at the end of this chapter that such monopoles divide the moduli space into

regions where there are extra zeros of the Higgs field and regions where there are not.

3.4 Inversion symmetric 3-monopoles

In this section, 3-monopoles with inversion symmetry are considered. All 3-monopoles

symmetric under inversion are D2 symmetric about some set of orthogonal axes. From the

previous section, the Nahm data are known if the D2 symmetry is about the Cartesian

axes. By considering how the Nahm data transform under rotation, the whole space of

inversion symmetric 3-monopoles is demonstrated to be the Atiyah-Hitchin manifold.

The spectral curve of an inversion symmetric 3-monopole must be of the general form

η3 + [c1 + c2ζ + rζ2 − c̄2ζ
3 + c̄1ζ

4]η = 0, (3.78)

where ci ∈ C and r ∈ R. In the Cartesian orientation of the previous section, the spectral

curve is (3.61) with Γ = 0; the angles θi may all be set to zero in this case. Thus, the
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Nahm data simplify to

T1(t) =
f1(t)

2




0
√

2i 0
√

2i 0
√

2i

0
√

2i 0


 , (3.79)

T2(t) =
f2(t)

2




0
√

2 0

−
√

2 0
√

2

0 −
√

2 0


 ,

T3(t) =
f3(t)

2




−2i 0 0

0 0 0

0 0 2i


 .

These invariant Nahm data correspond to the SO3 invariant 1 and the SO2 and D4 invariant

vectors in 5. The Nahm equations also simplify: since fi(s) = Fi(s) and is real, the reduced

Nahm equations are the Euler-Poinsot equations and the spectral curve is

η3 − (1− k2)K(k)2(ζ4 − 2
1 + k2

1− k2
ζ2 + 1)η = 0. (3.80)

This spectral curve is very similar to the 2-monopole spectral curve. The 2-monopole

Nahm data transforms under SO3 as 5 ⊕ 3 ⊕ 1. As with the 3-monopole Nahm data the

D2-symmetric Nahm data correspond to the SO3 invariant 1 and the SO2 and D4 invariant

vectors in 5.

The whole manifold of inversion symmetric rational maps is four dimensional. This

is easily demonstrated using the Donaldson rational map description. Inversion is I =

σxy ◦ Rotπ. The action of the reflection does not affect the numerator q(z). This means

that it must be invariant under Rotπ. Since Rotπ acts on q(z) by changing the sign of z

and the overall sign q(z) = z(z2−β2) for some β ∈ C. The candidate inversion symmetric

rational map is

R(z) =
az2 + bz + c

(z − β)z(z + β)
(3.81)

for complex a, b and c. This is inversion invariant if, and only if,

p(−z)p(z) ≡ 1 mod z3 − β2z (3.82)
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or equivalently,

p(β)p(−β) = 1, (3.83)

p(0)2 = 1. (3.84)

The first strong-centring condition (2.93) is automatically satisfied by q(z). The second

strong-centring condition (2.94) is

p(β)p(0)p(−β) = 1. (3.85)

When combined with (3.83) and (3.84) this gives p(0) = 1 and thus c = 1. Explicitly

substituting p(z) into (3.83) gives the condition

b2 − a2β2 = 2a. (3.86)

This defines a surface in C3 of two complex dimensions, corresponding to inversion sym-

metric strongly centred 3-monopoles. The argument above assumes that the roots are

distinct. That is, β 6= 0. In fact, (3.86) applies in the β = 0 case as well.

This four-dimensional submanifold of the 3-monopole moduli space is the fixed set of

the inversion action on the entire 3-monopole moduli space. The fixed point set of a finite

group action on a Riemannian manifold is totally geodesic and so this submanifold is a

totally geodesic submanifold ofM0
3. This metric is the Atiyah-Hitchin metric.

This is because the space of 2-monopoles and the space of inversion symmetric 3-

monopoles have the same Nahm data. Along the Cartesian orientated D2 geodesic, the

latter is mapped to the former by replacing the matrix basis of 2 by that of 3. The Nahm

data transform under SO3 like a vector in 5 in each case. This means that the space of

2-monopole Nahm data are identical to the space of 3-monopole Nahm data except that

the matrices appearing in the 2-monopole case are the basis of 2 and in the 3-monopole

case they are the basis of 3. Since the metric on the space of Nahm data are given by

‖Y0, Y1, Y2, Y3‖2 = −
∫ 1

−1

∑

i=0...3

tr(Y 2
i )dt, (3.87)

the two metrics are identical apart from an overall factor. This factor is easy to calculate.

It is given by the ratio between the traces of the squares of the matrices in the two cases.
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This factor is four and the metric for 3-monopoles is four times that for 2-monopoles. It

is noted that there is a difference in topology between the two spaces [Bi2].

It is instructive to construct the Gibbons-Manton point particle metric for 3-monopoles

with inversion symmetry. In the case of three monopoles that are symmetric under inversion

symmetry r1 = ρ, r2 = 0 and r3 = −ρ. Furthermore dχ1 = dθ, dχ2 = 0 and dχ3 = −dθ is

required. Denoting w12 = w23 by w so that w13 = 1
2
w;

gij =
1

ρ




ρ− 3
2

1 1
2

1 ρ− 2 1

1
2

1 ρ− 3
2




(3.88)

Wij =
1

2




−3w 2w w

2w −4w 2w

w 2w −3w




,

so

ds2 = 4

[
1

2

(
1− 2

ρ

)
dρ · dρ +

1

2

(
1− 2

ρ

)−1

(−dθ + 2w · dρ)2

]
. (3.89)

Up to the overall factor of four this is the asymptotic metric for two strongly centred

monopoles separated by a distance ρ. Note that in the 2-monopole case, ρ is the separation

of the two monopoles, whereas in the 3-monopole case it is the distance from the monopole

at the origin to either of the other two monopoles.

It is possible to apply inversion symmetry to k-monopoles for k > 3. However, the

resulting geodesic submanifold has more than four dimensions and so cannot be an Atiyah-

Hitchin submanifold. However, Bielawski [Bi2] has succeeded in finding geodesic Atiyah-

Hitchin submanifolds of the k-monopole moduli space for each k. These submanifolds

correspond to k-monopoles with inversion symmetry and the individual monopoles are

equally spaced along an axis. Bielawski derives his result by considering the moment map

construction.

One interesting property of these equally spaced monopoles is clear from the asymptotic

metric. Inversion symmetry requires that ρ1 = ρ, ρ2 = 0 and ρ3 = −ρ. It is then necessary
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to fix dθ1 = dθ, dθ2 = 0 and dθ3 = −dθ in order to derive the asymptotic 2-monopole metric.

Similarly, for the asymptotic metric for k equally spaced monopoles to be the same, up to

a factor, as that for two monopoles the monopoles must be have dθ’s proportional to their

distance from the origin. This means, Bielawski’s equally spaced monopoles have electric

charge proportional to their distance from the centre of mass.

Since the Nahm data for these monopoles are known, the monopole fields can be con-

structed. Figure 3.7 shows a surface of constant energy density for various times along

the head-on scattering geodesic of Fig. 3.3. In Fig. 3.7(a) are three separated monopoles.

As they approach, they deform and merge to form a pretzel shape, Fig. 3.7(b). Moving

along the geodesic, the monopole becomes more ring-like, Fig. 3.7(c). It instantaneously

forms the torus, Fig. 3.7(d), before separating out again, through the same configurations,

rotated through π/2, Fig. 3.7(e-g).

There is a closed 2-monopole geodesic [BM] corresponding to two orbiting monopoles.

It can immediately be concluded that a closed 3-monopole geodesic exists. Following [BM],

the value of the elliptic modulus k for the rotating 3-monopole configuration is determined

as the root of the equation

∫ 1

2
π

0

2k2 sin2 φ− 1√
1− k2 sin2 φ

dφ = 0 (3.90)

giving k ≈ 0.906.

Figure 3.8 shows a surface of constant energy density for this monopole. The monopole

has been rotated so that the axis of rotation is in the plane of the page. The monopole

motion is a periodic orbit, rotating at constant angular velocity about the axis, which is

at an angle of approximately π/9 to the vertical [BM].

3.5 Twisted line scattering of 3-monopoles

The numerical ADHMN construction may also be used to plot surfaces of constant

energy density for 3-monopoles along the twisted line scattering geodesic. Figure 3.9
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Figure 3.7: A surface of constant energy density at increasing times.
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Figure 3.8: A surface of constant energy density for the rotating 3-monopole, together with

the axis of rotation.
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Figure 3.9: Twisted line scattering of 3-monopoles; surface of the constant energy density

at increasing times.
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Figure 3.9: continued.

110



displays a surface of constant energy density for seventeen different members of the family

of monopoles. At large negative times (1) there are three well-separated monopoles. One

monopole is stationary at the origin, a second monopole is approaching along the positive

x3-axis and a third is approaching along the negative x3-axis. As the monopoles merge,

(2), the one in the centre twists as it attempts to align with both the top and bottom

monopoles. The energy tries to flow towards the centre but gets squeezed out sideways

to form the twisted figure-of-eight shape (4). In picturing these 3-monopoles, this twisted

figure-of-eight shape is instructive. It resembles a twisted figure-of-eight, with the bottom

loop at right angles to the top loop. It is similar to a tetrahedron in which two opposite

edges have been bent into half circles. The energy continues to flow towards the x1x2-plane,

but now it has more of a sideways motion. This leads to the formation of the tetrahedral

monopole (6). The diagonal movement of the energy density pulls the tetrahedron apart (7)

into a buckled torus (8). This then straightens out to form the axisymmetric 3-monopole

(9) at time zero. The energy continues to flow in the same direction so that the torus

buckles in the opposite sense (10). The motion at positive times goes backwards through

the configurations just described, except that the monopoles are inverted so, for example,

the tetrahedral monopole (12) formed at positive time is dual to the one (6) formed at

negative time.

3.6 The zeros of the Higgs field

In this section, an aspect of the charge three twisted line scattering process is discussed.

During this scattering process, the number of zeros of the Higgs field is not conserved. The

total number of zeros of the Higgs field, counted with their multiplicity, is k for a k-

monopole and these zeros are not always isolated, but may coalesce to form zeros of higher

multiplicity. For example, in the case of the toroidal 3-monopole there is a single zero but

it has multiplicity three. What is surprising about the charge three twisted line scattering

geodesic, is that there are intervals when the total number of zeros exceeds three.

The scattering process passes from three well-separated monopoles through the tetra-
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hedral configuration to the toroidal configuration. When there are three well-separated

monopoles the Higgs field has exactly three zeros. The axisymmetric monopole has all

three Higgs zeros at the origin and it is clear that the only way to arrange three points

with tetrahedral symmetry is to put all three points at the origin. Thus, if the tetrahedral

monopole has three zeros of the Higgs field, then they must all be at the origin; as in

the case of the axisymmetric monopole. Moreover, throughout twisted line scattering the

imposed symmetry means that if there are three zeros of the Higgs field, then one must be

at the origin with the other two on the x3-axis and equidistant from the origin. However,

numerical investigations reveal that there are no zeros of the Higgs field on the x3-axis,

except at the origin, for all the monopole solutions between the tetrahedral monopole,

Fig. 3.9(5) and the axisymmetric monopole, Fig. 3.9(9). So, if the number of Higgs zeros

remains three, then the surprising conclusion is that the zeros of the Higgs field must stick

at the origin for a period of time.

The above argument fails because it assumes that the number of zeros of the Higgs

field is always three for a 3-monopole solution of the Bogomolny equation. In the case

of Abelian Higgs vortices at critical coupling, the vortex number not only gives the total

number of zeros counted with their multiplicity but also bounds the total number of zeros

[JT]. However, some of the monopoles in the one-parameter family have more than three

zeros. In fact, at different points along the twisted line scattering geodesic the number of

zeros is one, three, five or seven.

The first approach is to compute the winding number, Q(r0), of the normalized Higgs

field on a two-sphere of radius r0, centred at the origin. This integer winding number

counts the number of zeros of the Higgs field counted with multiplicity inside this two-

sphere. Necessarily, Q(∞) = k for a k-monopole. A numerical scheme is used to compute

the winding number and is described in [HS3].

First, the tetrahedral monopole is considered and it is computed that Q(1.0) = +3.

The winding number is equal to three when r0 is sufficiently large. If all three Higgs zeros

were at the origin then the winding number would equal three for all positive values of r0.

However Q(0.2) = −1. Therefore, between the sphere of radius r0 = 0.2 and the sphere
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Figure 3.10: Components of the Higgs field of the tetrahedral 3-monopole along the line

x1 = x2 = x3 = L, for −0.4 ≤ L ≤ 0.4.

of radius r0 = 1.0 there must be four zeros, each of which has have an associated local

winding number of +1. These extra zeros are located by plotting the components of the

Higgs field. The Higgs field is written in terms of Pauli matrices as

Φ = iσ1ϕ1 + iσ2ϕ2 + iσ3ϕ3 (3.91)

and the individual components ϕ1, ϕ2, ϕ3 are plotted. It is easier to locate a zero of the

Higgs field by searching for where all three components are zero rather than simply looking

at |Φ|. The task is simple because of the tetrahedral symmetry. Fig. 3.10 shows the

components of the Higgs field along the line x1 = x2 = x3 = L, for −0.4 ≤ L ≤ 0.4.

It is clear that all three curves have a zero at L = 0 and L ≈ −0.38. By tetrahedral

symmetry, similar curves are obtained along each of the other three diagonals. Hence, the

numerical evidence suggests that there are four positive zeros on the vertices of a regular
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Figure 3.11: Energy density of the tetrahedral 3-monopole along the line x1 = x2 = x3 = L,

for −3 ≤ L ≤ 3.

tetrahedron and an anti-zero at the origin. Therefore, the tetrahedral 3-monopole is a

solution in which the Higgs field has both positive multiplicity and negative multiplicity

zeros but nonetheless saturates the Bogomolny energy bound.

An obvious question is whether the positive zeros lie along the directions of the vertices

of the tetrahedron, where the energy density is maximal, or along the directions of the

faces of the tetrahedron, where a surface of constant energy density has holes. Figure 2(b)

shows a plot of the energy density along the line x1 = x2 = x3 = L, for −3 ≤ L ≤ 3. The

zeros lie along the lines joining the origin to the vertices of the tetrahedron. However, the

zeros are not as far from the origin as the points of maximal energy density. The zeros
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Figure 3.12: Motion of zeros of the Higgs field during twisted line scattering.

occur at L ≈ −0.38 whereas the energy density takes its maximum value at L ≈ −1. It

is interesting to note that the location of the anti-zero appears to coincide with a local

minimum of the energy density.

The motion of the zeros of the Higgs field can be described. This motion is sketched in

Fig. 3.12. When the monopoles are well-separated, there are three zeros of the Higgs field,

Fig. 3.12(a). One is at the origin and the other two are equidistant above and below the

origin along the x3-axis. Obviously, in the asymptotic limit of infinite separation each of

these zeros lies at the centre of a 1-monopole. At some critical point, as the zeros approach,

there is a bifurcation. Each of the zeros above and below the origin split into three zeros:

two with positive multiplicity and one with negative multiplicity. In this way, the number

of zeros counted with their multiplicity is conserved locally. Unfortunately, neither the

precise details of this bifurcation nor the precise point at which it occurs is discernable
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numerically. However, it is certain that as the matter begins to coalesce there are seven

zeros of the Higgs field, Fig. 3.12(b): one at the origin of positive unit multiplicity, two

above and below the origin on the x3-axis of negative unit multiplicity and four further

positive multiplicity zeros away from the x3-axis. These four zeros move consistently with

the twisted line symmetry, the two above the x1x2-plane are separated along a line parallel

to the line x1 = −x2 and x3 = 0 and the two below, parallel to the line x1 = x2 and x3 = 0.

As the monopoles continue to coalesce, the anti-zeros approach the origin, Fig. 3.12(c).

They leave behind the four zeros which are off the x3-axis. They reach the origin at the

tetrahedral configuration, Fig. 3.12(d). At the tetrahedral configuration there are five zeros,

a single zero of negative unit multiplicity at the origin and four with positive multiplicity

arranged in a tetrahedron. The four positive multiplicity zeros then move towards the

origin, Fig. 3.12(e), and finally reach the origin to give a single multiplicity three zero, Fig.

3.12(f).

Numerical evidence to support this description of the configuration of Higgs zeros at

the tetrahedral configuration is given above. There are similar numerical results to support

the description of the configuration of Higgs zeros prior to the formation of the tetrahedral

monopole, but after the splitting of the Higgs zeros.

At one such 3-monopole, the winding numbers are computed to be

Q(0.2) = +1, (3.92)

Q(0.5) = −1,

Q(0.7) = +3.

This is consistent with a positive zero at the origin, two negative zeros on the x3-axis and

four positive zeros which are further from the origin than the negative zeros. The positions

of the zeros can be located, in the same manner as in the tetrahedral case, by plotting the

components of the Higgs field. By the imposed symmetries, each of the zeros must lie on

a line where x1 = ±x2. Therefore, the components of the Higgs field are plotted along the

line x1 = x2 = L, with x3 fixed. Fig. 3.13 shows such a plot, with x3 = −0.425. This

clearly shows a zero on the x3-axis. Fig. 3.14 shows a similar plot for x3 = −0.605. It can
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Figure 3.13: Components of the Higgs field of the monopole with parameter a = 2.05,

along the line x3 = −0.425, x1 = x2 = L, for −0.4 ≤ L ≤ 0.4.

be seen that there are at two zeros, which are a distance L ≈ 0.17 from the x3-axis. These

results are in agreement with the winding number calculations, which placed bounds on

the distances of each of the zeros from the origin.

The existence of anti-zeros raises a number of questions. For example, can the presence

of an anti-zero be seen from the spectral curve or rational map of a monopole? It seems

likely that the appearance and disappearance of anti-zeros has a signature in the space of

rational maps or in the space of spectral curves. Unfortunately, the numerical results do

not locate the exact 3-monopole at which anti-zeros appear or disappear in the twisted

line scattering. One possibility is that such an event is associated with the elliptic curve

discriminant of the elliptic curve vanishing. The point at which this happens is marked

with a Y in Fig. 3.6. The numerical results are consistent with the bifurcation of zeros

117



-0.01

-0.005

0

0.005

0.01

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

co
m

po
ne

nt
s 

of
 th

e 
H

ig
gs

 fi
el

d

L

Figure 3.14: Components of the Higgs field of the monopole with parameter a = 2.05,

along the x3 = −0.605, x1 = x2 = L, for −0.4 ≤ L ≤ 0.4.

occuring at this 3-monopole. It is possible that the ∆ = 0 line divides the space of D2

symmetric 3-monopoles between a region with anti-zeros and a region without.
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Chapter 4

Conclusions

4.1 Symmetric multimonopoles

For the most part, this thesis is about how finite symmetry groups are used to study

multimonopoles. In Chapter 1 BPS monopoles are described. BPS monopoles are solutions

to the Bogomolny equation, an integrable, first-order equation for algebra-valued fields. Its

moduli space is isometrically diffeomorphic to the moduli space of solutions to the Nahm

equations, a set of ordinary nonlinear differential equations whose solutions are called

Nahm data. Nahm equations are spinning top equations and their integrability has a Lax

formulation. This is reviewed in Chapter 1. It is described how, because there is a genus

one spectral curve, the Nahm equations for 2-monopoles are tractable.

The Nahm equations for 7-monopoles are generally intractable. However, the Nahm

equations for an icosahedrally invariant 7-monopoles are tractable and in Chapter 2 these

equations are calculated and solved. From a solution of the Nahm equations the monopole

fields are numerically attainable and the icosahedrally symmetric 7-monopole is pictured.

The Nahm equations for an octahedrally symmetric 5-monopole are also tractable and this

monopole is also pictured. The symmetries of these monopoles make their Nahm equations

tractable.

There are only a few special cases where the symmetries of a multimonopole make its

Nahm equations tractable. In Chapter 3 it is explained how a monopole’s Nahm equations
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have elliptic solutions if the curve obtained by dividing the monopole’s spectral curve by

its symmetries is a genus one curve. The Nahm data give very complete information about

a monopole but are not generally available. To study symmetric multimonopoles generally,

that is, to study them in cases where the Nahm equations are not tractable, the rational

map descriptions are used.

The rational map descriptions are reviewed in Chapter 2. They describe monopole mod-

uli spaces and are used here to study symmetric multimonopoles. Geodesics of symmetric

monopoles are found using the Donaldson rational maps. As an example, the geodesic of

C4h 5-monopoles is presented. This geodesic passes through the octahedral 5-monopole.

With this exception, Nahm data are not known for C4h 5-monopoles. Nonetheless, qual-

itative information about the 5-monopoles along this geodesic can be deduced from the

rational map.

The twisted line scattering geodesics are an interesting family of geodesics which are

studied using the Donaldson rational maps. They are geodesics of monopoles with rotary-

reflection symmetries. During twisted line scattering three clusters of monopoles col-

lide along a line, an axially symmetric monopole forms and three clusters seperate again

along the same line. The simplest example is the twisted line scattering of 3-monopoles.

Monopoles on the positive and negative x3-axis approach a monopole at the origin. They

coalesce to form the tetrahedral 3-monopole, then the axially symmetric 3-monopole and

then another tetrahedral 3-monopole before seperating again along the x3-axis.

Using the Jarvis rational map it is possible to tell precisely which symmetric monopoles

there are. A rotation of a monopole corresponds to a Möbius transformation of the source

sphere of the corresponding Jarvis map. A symmetric monopole corresponds to a symmet-

ric rational map. In this way, the question of which symmetric monopoles exist is reduced

to the question of which symmetric rational maps there are, a question answered using

elementary group representation theory. This is discussed at the end of Chapter 2. It is

found, for example, that there is a geodesic of tetrahedral 4-monopoles.

From Chapter 2 it known that some symmetric monopoles have tractable Nahm data.

It is also known, in principle, which symmetric monopoles exist. Chapter 3 opens with
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an explanation of which symmetric monopoles have tractable Nahm equations. This dis-

cussion indicates that tetrahedral 4-monopoles and D2 3-monopoles have tractable Nahm

equations. The Nahm equations are calculated in these cases. The tetrahedral 4-monopole

Nahm equations are similar to the other symmetric Nahm equations. They are easily

solved and the 4-monopoles along the tetrahedral geodesic are pictured.

There is a two-dimensional space of D2 3-monopoles. The D2 3-monopole Nahm equa-

tions are complex Euler-Poinsot equations and their solutions are known. Some features of

this space are deduced from the spectral curve. There are geodesics in this space that are

identical to the 2-monopole right-angle scattering geodesics. The 3-monopole twisted line

scattering geodesics also lie in this space. Knowing the Nahm data for these monopoles

allows the fields to be computed numerically. It is discovered that there are monopoles

along the geodesics with anti-zeros of the Higgs field.

The space of D2 symmetric 3-monopoles illustrates some of those properties of mul-

timonopoles not common to 2-monopoles. It contains monopoles with anti-zeros and

monopoles without. It also contains right-angle and zero-angle scattering geodesics. A

numerical study of the D2 symmetric 3-monopole space would show what region of it

contains anti-zeros and whether zero-angle scattering is typical or exceptional. It is also

probable that the metric on this space could be calculated explicitly.

4.2 Nahm data and new hyperKähler manifolds

Many different hyperKähler manifolds are monopole moduli spaces. These hyperKähler

manifolds always have an isometric SO3 action. In Chapter 1 new hyperKähler manifolds

are derived from monopole moduli spaces by fixing monopoles. These fixed monopole

spaces do not have an SO3 action. Dancer’s one-parameter family of four-dimensional hy-

perKähler manifolds are shown to be fixed monopole spaces; Dancer originally constructed

the family using the hyperKähler quotient. A three-parameter family of fixed monopole

spaces is exhibited. This family is also constructed as a hyperKähler quotient.

Fixed monopole spaces are of interest because of the Hanany-Witten correspondence.
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Figure 4.1: Two Skyrmions attracting. The different arrow types correspond to different

dipoles.

This correspondence relates monopole moduli spaces and three-dimensional supersymmet-

ric quantum field theories. The fixed monopole spaces correspond to supersymmetric

theories with massive hypermultiplets.

In [Da3] the rational map formulation for SUn monopoles is used to elucidate the

structure of Dancer’s manifolds. It will be possible to generalize this to other fixed

monopole spaces, allowing the structural predictions for such manifolds which follow from

the Hanany-Witten correspondence to be verified. More generally, the fixed monopole con-

struction demonstrates how, in addition to their application to BPS monopoles, the Nahm

equations are useful in the study of hyperKähler manifolds and branes.

4.3 Multimonopoles and Skyrmions

In [HMS] is an ansatz for minimum energy Skyrmions. This ansatz replaces the

hedgehog field of the 1-Skyrmion with a field whose angular distribution is described by

a rational map. The ansatz is demonstrated to give good approximation to the known

Skyrmions: those of baryon numbers one to nine [BTC, BaS2]. Thus, for example, the

tetrahedral degree three rational map yields a good approximation to the minimum energy

3-Skyrmion. In the Jarvis description this tetrahedral rational map is equivalent to the

tetrahedral 3-monopole and the 3-Skyrmion resembles this monopole. At the cost of ending

this thesis with a speculative aside, it is interesting to note how similar are the behaviours

of D2 3-monopoles and D2 configurations of three Skyrmions.
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Figure 4.2: Three equally spaced collinear Skyrmions. Configuration (a) evolves into the

pretzel, configuration (b) evolves into the tetrahedron.

The product ansatz allows the superposition of well-separated Skyrmions. A Skyrmion

has three distinct orthogonal dipoles. Two well-separated Skyrmions attract or repel de-

pending upon the mutual orientation of these dipoles. Two Skyrmions maximally attract

if the difference of orientation of their dipoles is a rotation of π about an axis orthogonal

to the line of separation. The product ansatz and the attractive orientation are reviewed

in [Ma4, Sc]. An attractive orientation is pictured in Fig. 4.1.

Three Skyrmions, superimposed so that they are equally spaced along a line, move

towards each other if the two outlying Skyrmions maximally attract the middle one. The

relative orientation of the outlying Skyrmions does not affect the fact of overall dipole

attraction. However, the orientation is significant in the interaction region where the

product ansatz is not valid. If the outlying Skyrmions are in the same orientation, Fig.

4.2a, they form a pretzel configuration reminiscent of Fig. 3.7b, [BaS3]. If there is a relative

rotation of π about the separation axis, Fig. 4.2b, they form a tetrahedral configuration,
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reminiscent of Fig. 3.9(6), [BaS1].

The similarities of this behaviour to that of D2 symmetric 3-monopoles is apparent.

It is imagined that the unstable manifold of three well-separated D2 Skyrmions is two

dimensional. When the three Skyrmions are well-separated these two dimensions corre-

spond to separation and a relative dipole orientation. In the monopole analogue, the two

dimensions are also imagined to correspond to separation and relative phase orientation.

The important feature of the analogy is that attraction partially fixes the relative dipole

orientation of the individual Skyrmions.
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